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ABSTRACT

Three chapters are included in this work. The first chapter introduces the remaining

chapters. The description of the research chapters (Chapters 2 and 3) can be found in

the following paragraphs.

In Chapter 2, we consider the problem of estimating high-frequency covariance

(quadratic covariation) of two arbitrary assets observed asynchronously. Simple as-

sumptions, such as independence, are usually imposed on the relationship between the

prices process and the observation times. In Chapter 2, we introduce a general en-

dogenous two-dimensional nonparametric model. Because an observation is generated

whenever an auxiliary process called observation time process hits one of the two bound-

ary processes, it is called the hitting boundary process with time process (HBT) model.

We establish a central limit theorem for the Hayashi-Yoshida estimator under HBT in

the case where the price process and the observation price process follow a continuous

Itô process. We obtain an asymptotic bias. We provide an estimator of the latter as

well as a bias-corrected estimator of the high-frequency covariance. In addition, we give

a consistent estimator of the associated standard error.

In Chapter 3, we show that the techniques used to solve the high-frequency covari-

ance problem can actually be applied to other problems in the high-frequency literature.

We give a general time-varying parameter model, where the multidimensional param-

eter follows a continuous local martingale. As such, we call it the locally parametric

model (LPM). The quantity of interest is defined as the integrated value over time of

the parameter process Θ := T−1
∫ T

0
θ∗t dt. We provide an estimator of Θ based on a

parametric estimator in the original (non time-varying) parametric model and condi-

tions under which we can show consistency and the corresponding central limit theorem.
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Since the estimator is obtained by chopping the data into small blocks, then estimating

the parameter on each block while pretending it is constant locally and finally taking a

block length weighted mean of the estimates on each block, we call it the local paramet-

ric estimator (LPE). The class of estimators is very broad, and can contain estimators

that are (not too) biased, such as the bias-corrected MLE. We show that the LPM class

contains some models that come from popular problems in the high-frequency financial

econometrics literature (estimating volatility, high-frequency covariance, integrated be-

tas, leverage effect, volatility of volatility), as well as a new general asset-price diffusion

model which allows for endogenous observations and time-varying noise which can be

auto-correlated and correlated with the efficient price. Finally, as another example of

how to apply the limit theory provided in Chapter 3, we build a time-varying friction

parameter extension of the (semi-parametric) model with uncertainty zones (Robert

and Rosenbaum (2012)) and we show that we can easily verify the conditions for the

estimation of integrated volatility.

v
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CHAPTER 1

INTRODUCTION

High-frequency data analysis has been one of the main challenging fields in statistics,

both because of the quantity of data available and the highly technical theory required to

tackle problems. Ever since the seminal paper of Black and Scholes (1973), researchers

have been interested in the estimation of integrated volatility. One typical reason why

practitioners care very much about integrated volatility is that they can hedge knowing

its value. Similar problems found in the high-frequency literature include but are not

limited to high-frequency covariance, microstructure noise, integrated betas, leverage

effect, volatility of volatility, etc.

Because the theory involved in estimating high-frequency quantities is very demand-

ing, researchers have to make assumptions, usually stronger than what empirical studies

reveal, in order to show consistency and the central limit theorem of a given estimator,

as is the case with the Hayashi-Yoshida estimator (HY) of high-frequency covariance

introduced in Hayashi and Yoshida (2005). It is usually assumed that the order arrival

times are independent of the asset price. In Chapter 2, we investigate what happens

to the HY when sampling times are correlated with the stochastic price. We obtain an

asymptotic bias and give a bias-corrected estimator of high-frequency covariance.

Indeed, covariation between two assets is a crucial quantity in finance. Fundamental

examples include optimal asset allocation and risk management. In the past few years,

using the increasing amount of high-frequency data available, many papers have been

published about estimating this covariance. Suppose that the latent log-price of two

1
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arbitrary assets Xt = (X
(1)
t , X

(2)
t ) follows a continuous Itô process

dX
(1)
t := μ

(1)
t dt+ σ

(1)
t dW

(1)
t , (1.1)

dX
(2)
t := μ

(2)
t dt+ σ

(2)
t dW

(2)
t , (1.2)

where μ(1)
t , μ

(2)
t , σ

(1)
t , σ

(2)
t are random processes, and W (1)

t and W (2)
t are standard Brow-

nian motions, with (random) high-frequency correlation d〈W (1),W (2)〉t = ρtdt. Econo-

metrics usually seeks to infer the integrated covariation

〈X(1), X(2)〉t :=
∫ t

0

ρuσ
(1)
u σ(2)

u du. (1.3)

Earlier results were focused on estimating the integrated variance of a single asset,

starting from the probabilistic point of view (Genon-Catalot and Jacod (1993), Ja-

cod (1994)). Barndorff-Nielsen and Shephard (2001, 2002) introduced the problem in

econometrics. Adapted to two dimensions, if each process is observed simultaneously at

(possibly random) times τ0,n := 0, τ1,n , . . . , τNn,n the realized covariation
[
X(1), X(2)

]
t

is defined as the sum of cross log returns

[
X(1), X(2)

]
t
=

∑
τi,n≤t

ΔX(1)
τi,n

ΔX(2)
τi,n
, (1.4)

where for any positive integer i, ΔX(k)
τi,n = X

(k)
τi,n −X

(k)
τi−1,n corresponds to the increment

of the kth process between the last two sampling times. As the observation intervals

Δτi,n get closer (and the number of observations Nn goes to infinity),
[
X(1), X(2)

]
t

P→
〈X(1), X(2)〉t (see e.g. Theorem I.4.47 in Jacod and Shiryaev (2003)). Furthermore,

when the observation times τi,n are independent of the prices process Xt, its estimation

error follows a mixed normal distribution (Jacod and Protter (1998), Zhang (2001),

Mykland and Zhang (2006)). This gives us insight on how to estimate the integrated

covariation. However, in practice, these two assumptions are usually not satisfied. The

observation times of the two assets are rarely synchronous and there is endogeneity in

2
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the price sampling times.

The first issue has been studied for a long time. The lack of synchronicity often cre-

ates undesirable effects in inference. If we sample at very high frequencies, we observe

the Epps effect (Epps (1979)), i.e. the correlation estimates are drastically decreased

compared to an estimate with sparse observations. We can observe the same effect for

exchange rates (Guillaume et al. (1997), Muthuswamy et al. (2001)). Additionnally,

asynchronicity can cause difficulties in daily data (Scholes and Williams (1977)). At

first, the literature on estimating the covariance mostly relied on a forced synchro-

nization of the data (see, e.g., Lundin et al. (2001), Brandt and Diebold (2003)), for

instance choosing beforehand a window of size h, and interpolating the values of the two

assets at times {h, 2h, . . . ,Mh}. Hayashi and Yoshida (2005) introduced the so-called

Hayashi-Yoshida estimator (HY)

〈 ̂X(1), X(2)〉HY
t =

∑
τ
(1)
i,n ,τ

(2)
j,n<t

ΔX
(1)

τ
(1)
i,n

ΔX
(2)

τ
(2)
j,n

1{
[τ

(1)
i−1,n,τ

(1)
i,n )∩[τ (2)j−1,n,τ

(2)
j,n) �=∅

}, (1.5)

where τ (k)i,n are the observation times of the kth asset. Note that if the observations of

both processes occur simultaneously, (1.4) and (1.5) are equal. One of main advantages

of HY is that it is nonparametric in nature.

We insist on the fact that the primary goal of Chapter 2 is to provide a better

estimator of the high-frequency covariance than the usual Hayashi-Yoshida estimator.

To obtain this new estimator, we will estimate the second-order bias, and remove it from

the Hayashi-Yoshida estimator. Note that estimating this bias is much more challenging

than in the volatility case because observations are asynchronous. In particular, the

estimator will involve a quantity that can be considered as the tricity of Li et al.

(2014), but with a more intricate definition because of the asynchronicity in sampling

times. This new definition can be seen as an analogy with the generalization of the RV

estimator (1.4) by the HY estimator (1.5).

3
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Another very important issue to address is the estimation of the asymptotic stan-

dard deviation. First, because the model is more general than in the no-endogeneity

work, the theoretical asymptotic variance will be different. Consequently, a new vari-

ance estimator, which takes into proper account the endogeneity, will be given. This

estimator is built mostly on the observed price of the assets, whereas the variance es-

timate of the Hayashi-Yoshida machinery (see e.g. Hayashi and Yoshida (2011) and

Koike (2013)) relied heavily on the actual observation times. In practice, there is a lag

between the time when a stock market’s agent is giving a bid-ask order and the recorded

(observed) time. As such, we cannot trust completely the observation times. Conse-

quently, even in the no-endogeneity case, the variance estimate provided in Chapter 2

has a big advantage compared to the previous variance estimator.

The proof of the high-frequency covariance problem goes as follows. We first show

that we can bound uniformly the variance of HY when assuming a parametric problem,

i.e. fixing the volatility and high-frequency correlation between the two assets. Then, we

chop the data into non-overlapping blocks of observations and show that the normalized

discrepancy between the nonparametric error of HY and the parametric approximation

of the error uniformly vanishes asymptotically.

These techniques are not problem-specific and they can very much be applied to

other problems in the high-frequency literature. This is the basic idea behind Chapter

3. We assume in Chapter 3 that the stochastic multidimensional parameter θ∗t is driving

the structure of the returns. This leads us to the problem of estimating the integrated

parameter

Θ :=
1

T

∫ T

0

θ∗sds. (1.6)

The parameter process can be for example equal to the volatility, the covariation be-

tween several assets (1.3), the time-varying variance of the microstructure noise, the

friction parameter of the model with uncertainty zones (see Section 3.7.1 for more de-

4
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tails), the betas, the volatility of volatility, the leverage effect process, the event arrival

rate or any other parameter driving the observation times (see Section 3.7.1), the pa-

rameters of a self-exciting process (Hawkes (1971)) or in general of any time-varying

parameter extension of a parametric model, etc. As an example of application of (1.6),

Chen and Mykland (2015) measured the liquidity risk when the parameter is equal to

the time-varying variance of the microstructure noise.

We assume that the econometrician has a time-varying parameter model (and in

particular a parametric model) at hand, that can be written as the Locally Parametric

Model (LPM) defined in Section 3.5. The LPM covers a large class of models, as we

will see in the examples of Section 3.7. In particular, in the case where we model the

price of an asset as a continuous efficient stochastic process, it allows for endogeneity

(the sampling times can be correlated with the efficient price and the microstructure

noise), auto-correlated time-varying noise and correlation between the efficient return

and the noise, as well as multidimensional asynchronous observations.

Indeed, in high-frequency data, when estimating a quantity such as volatility, one

has to first build and rely on a model of the observations. When observations are close,

empirical studies strongly suggest that the market microstructure generates a divergence

between the observed price process and efficient price process. This divergence could

be induced among other things by transaction price changes occurring on the tick grid

(price discreteness) or by the existence of a waiting-list for sellers and buyers at each

level of price (bid-ask spreads). Accordingly, the market microstructure is very often

assumed to be stationary (i.e. with non time-varying variance) and not autocorrelated,

and independent of the true price process. Nonetheless, Hansen and Lunde (2006) have

shown empirically that the microstructure noise is time-dependent and correlated with

the efficient price itself. Correlation between the efficient price and the noise can be

explained by rounding effects, price stickiness, asymmetric information, etc. Kalnina

and Linton (2008) introduced in their model possible non-stationarity of noise and

correlation.

5
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We also assume that the econometrician has a parametric estimator in the (non

time-varying) parametric model at hand, such as the MLE. Chapter 3 aims to build

general estimators Θ̂n of (1.6), based on the parametric estimator. When parameters

are time-varying, researchers frequently chop the available data into short time blocks of

size hn and assume homoskedasticity within the blocks (e.g. Foster and Nelson (1996)).

In Chapter 3, we propose to use the same strategy to estimate the integrated parameter

(1.6): we estimate the local parameter on each block by using the parametric estima-

tor on the observations of the block and take a weighted sum of the local parameter

estimates, where each weight is equal to the corresponding block length. We call the

obtained estimator the local parametric estimator (LPE). Depending on the case, the

LPE can actually differ from the original parametric estimator. For this technique to

work, we need that the parametric estimator is not badly-biased and that it uniformly

satisfies limit theory conditions, in addition to other assumptions that can be found in

Section 3.6.

Depending on the model and the estimator chosen by the econometrician, the con-

ditions of Section 3.6 can be straightforward or not to verify. Nonetheless, our hope is

that for any LPM and for a large class of estimators Chapter 3 will help the econome-

trician by breaking the original nonparametric problem into two easier sub-problems, a

parametric problem and a control of the error between the nonparametric and paramet-

ric problem. We used exactly this strategy in Chapter 2 to find the limit distribution

of the integrated covariation in the HBT model (which is contained in the LPM class),

with the bias-corrected HY estimator (which can be expressed as a local parametric

estimator (LPE)). In Section 3.7.1, we give another direct application of the techniques

provided in Chapter 3 by verifying conditions of Section 3.2 for another problem, the

estimation of the integrated volatility in a time-varying friction parameter extension of

the model with uncertainty zones, using the parametric estimator of volatility provided

in Robert and Rosenbaum (2012).

We assume in chapter 3 that the stochastic parameter is continuous. We prove that

6
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under the diffusion assumption we can trust the parametric model locally. The order

of the block size hn to use is also given in Section 3.6. The idea that continuous local

martingale parameter implies that the model is locally true builds on previous investi-

gations by Mykland and Zhang (2009, 2011) of the maximum size of a neighborhood

in which we can hold volatility of an asset constant. In the case where the observation

times of the price process are endogenous, techniques were extended in Chapter 2.

Finally, from a practical point-of-view, empirical work (see Section 3.8) with Orange

France Telecom stock on the CAC 40 using the time-varying friction parameter exten-

sion of the model with uncertainty zones reveal that the friction parameter is indeed

time-varying and that the volatility estimates obtained with the LPE can differ very

much from the ones using the original parametric estimator. In addition, they indicate

that the estimates are robust to minor changes in the block size hn.

To sum up, we expect the techniques of this Ph.D. thesis to provide to researchers

automatic estimators of high-frequency quantities and techniques to prove consistency

and the associated central limit theorem.

7
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CHAPTER 2

ESTIMATING THE HIGH-FREQUENCY COVARIANCE

2.1 Introduction

The consistency of HY estimator was originally achieved in a non-random volatility

and independence between observation times and assets’ prices setting (Hayashi and

Yoshida (2005)) before being extended to a general Itô-process price model, with the

unique assumption that the observation times are stopping times (Hayashi and Kusuoka

(2008)). The corresponding central limit theorems were investigated in Hayashi and

Yoshida (2008, 2011) under strong predictability of observation times, which is a more

restrictive assumption than only assuming they are stopping times but still allows some

dependence between prices and observation times. Note that the second order asymp-

totic expansion was completed in Dalalyan and Yoshida (2011). Since then, most of

the literature has been interested in suitable modifications of this estimator, or the use

of a different estimator, that is robust to noisy observations (Zhang (2011), Barndorff-

Nielsen et al. (2011), Aït-Sahalia et al. (2010), Christensen et al. (2010), Christensen

et al. (2013) among others), with assumption of independence between the sampling

times and the prices of the assets. Recently, Koike (2014, 2015) extended the pre-

averaged Hayashi-Yoshida estimator first under predictability of observation times, and

then under a more general endogenous setting of stopping times. Interestingly, we can

read in Remark 3.5 (i) of Koike (2015) that under the assumptions chosen, the observa-

tion times affect the asymptotic distribution of the realized covariance estimator only

through the asymptotic variance, but not through the asymptotic bias.

In a general one-dimensional endogenous model, the asymptotic behaviour of the

realized volatility (1.4) has been investigated in the case of sampling times given by

8
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hitting times on a regular grid (Fukasawa (2010a)). The model with uncertainty zones,

a more intricate model based on hitting times of random and time-dependent grid, was

introduced and studied in Robert and Rosenbaum (2011, 2012). Also, a central limit

theorem under hitting times of a non-random, non time-dependent but irregular grid

was established in Fukasawa and Rosenbaum (2012). Note that due to the regularity of

those three models (see the discussion in the latter paper), they don’t obtain any bias

in the limit distribution of the normalized error. Also, the case of strongly predictable

stopping times is treated in Hayashi et al. (2011). Two general results (Fukasawa

(2010b), Li and al. (2014)) showed that we can identify and estimate the asymptotic

bias. In the latter work, the authors provide a new estimator of volatility that is free of

asymptotic bias. Correspondingly, they give an estimator of the asymptotic variance,

that variance being different from the theoretical variance when there is no endogeneity

in sampling times.

The authors want to take no position on the joint distribution of the log-return and

the next observation time that corresponds to an asset price change because they know

that their unknown relationship is most likely contributing to the bias and the variance

of the high-frequency covariance’s estimate when we (wrongly) assume full indepen-

dence between the price process and observation times. We want to understand how

badly HY can be affected in the worst endogenous setting. For this purpose, we intro-

duce the hitting boundary process with time process (HBT) model, which under weak

conditions is more general than the models in the existing literature (e.g. the model

with uncertainty zones or the structural autoregressive conditional duration model (Re-

nault et al. (2014)). Even though the mixing variables (in keeping with the notations of

the paper) μ̃ti = μti (Mi) and c̃ti = cti (Mi) introduced in (1), (4) and (5) of the dynamic

mixed hitting-time model can generate all kinds of autoregressive or log-autoregressive

dynamics, it only partly accommodates for what Russell (1999) notes: “The problem

is that it is difficult to model the distribution of a duration when new information can

arrive within a duration.” Indeed, the model doesn’t capture new information arriving

9
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between two trades, because μti and cti must be known with information at time ti.

One natural way to accomodate for new information to arrive between two trades is

to allow the fixed variables μti and cti to follow a stochastic process (within a trade),

which is what we are going to do in this chapter. Note that the one dimensional HBT

model is straightforwardly extended to the multidimensional case.

The HBT model is not solely a general class of models. It can provide semiparametric

and nonparametric models which can be fitted to the data. The parameter estimates of

those models could provide crucial information on some deep financial questions about

the connection between efficient price return and observation time. As an example, we

could build tests of asymmetric information with the model introduced in Section 2.3.2

of this work. Also, if we are able to shed light on the structure driving the endogeneity,

stock market agents could trade or hedge on the basis of that information. Investigating

what the endogenous structure looks like empirically is beyond the scope of Chapter 2

and will be left for further work.

As far as the authors know, no investigation of a possible bias in an endogenous

model has been carried out when estimating the high-frequency covariance. This work

can be considered as one of the last building blocks of the wall of the limit theory

of the Hayashi-Yoshida estimator when holding the asset price continuous because we

choose to work under the weakest assumptions (adapted to our proofs) regarding the

observation times.

Finally, techniques developed in the proofs are innovative in the sense that they

reduce the normalized error of the Hayashi-Yoshida estimator to a discrete process,

which is locally a uniformly ergodic homogeneous Markov chain. Thus, the problem

can be solved locally, and because we assume that the volatility of assets is continuous,

the error of approximation between the local Markov structure and the real structure

of the normalized error vanishes asymptotically.

Chapter 2 is organized as follows. We introduce the HBT model in Section 2.2.

10
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Examples contained in this class are given in Section 2.3. The main theorem of this

work, the limit distribution of the normalized error is given in Section 2.4. Estimators

of the asymptotic bias and variance are provided in Section 2.5. We carry out numerical

simulations in Section 2.6 to corroborate the theory. Proofs are developed in Appendix.

2.2 Definition of the HBT model

We first introduce the model in 1-dimension. We assume that Xt is the efficient (log-

)price of the security of interest. In practice, rather than continuously observing the

asset price Xt for any t, we can only observe it at discrete observation times τi. In

addition, we assume that the observations are noisy and that we observe Zτi := Xτi+ετi

where the microstructure noise ετi can be expressed as a known function of the observed

prices Z0, . . . , Zτi . Thus, when observing Z0, . . . , ZτNn
, we can retrieve exactly the

value of the efficient price at arrival times X0, . . . , XτNn
. As an example, Robert and

Rosembaum (2012) showed in (2.3) in p.5 that the model with uncertainty zones can be

written with that noise structure if we assume that we know the endogeneity parameter

η. The model with uncertainty zones will be studied in Example 4 of Section 2.3. Note

that the microstructure noise can be explained among other things by the discreteness

of prices, the bid-ask mechanisms, etc.

In this work, we assume that for any positive integer i, τi+1 is the next arrival time

(after τi) that corresponds to an actual change of price. In particular, several trades

can occur at the same price Zτi between τi and τi+1, but no trade can occur with a price

different than Zτi before τi+1. On the contrary, because τi corresponds to a change of

price, we assume Zτi+1
�= Zτi . Additionally, if we define α > 0 the tick size, we assume

that the observed price Zτi lays on the tick grid, i.e. there exists positive integers mi

such that Zτi := miα.

Empirically, no economical model based on rational behaviors of agents on the stock

markets, that shed light on the relationship between the efficient return ΔXτi and time

11



www.manaraa.com

before the next price change Δτi = τi − τi−1, has won unanimous support. When

arrival times are independent of the asset price, it follows directly from the continuous

Itô-assumption that the dependence structure is such that the return ΔXτi is a function

of Δτi. The longer we wait, the bigger the variance of the return is expected to be.

In Chapter 2, we take the opposite point of view by building a model in which τi is

defined as a function of the efficient price path. Our goal is to provide a model that

allows the most general structure between ΔXτi and Δτi. The definition of the model

that follows in this section will be the starting point of further work on endogeneity

because it is also possible to allow more general microstructure noise in the model. One

other quick extension of the model is that it could also allow error in the arrival times.

Investigating both those issues is beyond the scope of Chapter 2.

In general, the space E of all possible joint-distributions
(
ΔXτi ,Δτi

)
is too large to

work with. We define the observation time process X(t)
t that will drive the observation

times. We also define the down process dt(s) and the up process ut(s). Note that for

any t ≥ 0, we assume that dt and ut are functions on R+. We also assume that the

down process takes only negative values, the up process takes only positive values and

the observation time process starts from 0. A new observation time will be generated

whenever one of those two processes is hit by the observation time process. Then, the

observation time process will start again from 0, and the next observation time will be

generated whenever it hits the up or the down process. Formally, we define τ0 := 0 and

for any positive integer i

τi := inf
{
t > τi−1 : ΔX

(t)
[τi−1,t]

/∈ [
dt (t− τi−1) , ut (t− τi−1)

]}
, (2.1)

where ΔY[a,b] := Yb − Ya. Note that if the observation time process X(t)
t is equal to the

price process Xt itself, then the price will go up (respectively go down) whenever it hits

the up process (down process). Note also that if the time process, the up process and

the down process are independent of the efficient price process, then the arrival times

12
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are independent of the efficient price process. We assume that the two-dimensional

process (Xt, X
(t)
t ) is an Itô-process.. Section 3.3.1 provides examples of the literature

identifying the observation time process, the down process and the up process.

Generalizing to two dimensions is straightforward. We define X(t,k)
t for k = 1, 2

to be the observation time process associated with the kth price process , u(k)t the up

process and d
(k)
t the down process, and the arrival times τ (k)i generated by (2.1). We

also define the four dimensional process Yt := (X
(1)
t , X

(2)
t , X

(t,1)
t , X

(t,2)
t ), and assume Yt

follows an Itô-process with volatility

σt :=

⎛⎜⎜⎜⎜⎜⎝
σ1,1
t σ1,2

t σ1,3
t σ1,4

t

σ2,1
t σ2,2

t σ2,3
t σ2,4

t

σ3,1
t σ3,2

t σ3,3
t σ3,4

t

σ4,1
t σ4,2

t σ4,3
t σ4,4

t

⎞⎟⎟⎟⎟⎟⎠ .

In particular, we have dYt = μtdt + σtdWt, where Wt is a four dimensional standard

Brownian motion (for i = 1, . . . , 4 and j = 1, . . . , 4 such that i �= j, W (i)
t is independent

of W (j)
t ). If we set ζt = σtσ

T
t , then the integrated covariance (or quadratic covariation)

process is given by 〈Y, Y 〉t =
∫ t

0
ζsds. Let ρt be the associated correlation process of

Yt, i.e. for i = 1, . . . , 4 and j = 1, . . . , 4 we set ρi,jt = ζ i,jt (ζ i,it )−1. Finally, it is useful

sometimes to see Yt as a four dimensional vector expressed as in equations (1.1) and

(1.2). For k = 1, . . . , 4 we define the volatility of the kth process as σ(k)
t := (ζk,kt )

1
2 , we

can thus express Y (k)
t as

dY
(k)
t = μ

(k)
t dt+ σ

(k)
t dB

(k)
t

where B(k)
t is a standard Brownian motion, which typically depends on B

(l)
t for l =

1, . . . , 4.
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2.3 Examples

We insist on the fact that estimators of covariance and associated asymptotic variance

given in Chapter 2 don’t require any knowledge of the structure of the observation time

process, the up process and the down process. Nonetheless, for financial and economic

interpretation purposes, the reader might be interested in getting an idea on how those

processes behave in practice. We provide in this section several examples from the

literature as well as possible extensions of the model with uncertainty zones of Robert

and Rosenbaum (2011) that can be expressed as HBT models.

2.3.1 Endogenous models contained in the HBT class

Example 1. (hitting constant boundaries) The simplest endogenous semi-parametric

model we can think of is a model where the time process X(t)
t is equal to the price

process Xt, and times are generated by hitting a constant barrier. Formally, it means

that there exists a two-dimensional parameter (θu, θd) such that the up process is equal

to θu and the down process is equal to θd. We don’t assume noise in that model.

Example 2. (hitting constant boundaries of the tick size) One issue with Example 1

is that the efficient price Xτi , which is observed because no microstructure noise is

assumed in the model, is not necessarily a modulo of the tick size α if θu and θd are

not multiples of α. To make Example 2.3.1 feasible in practice, we assume here that

the constant barriers θu and θd are respectively equal to the tick size α and its additive

inverse −α. We also assume that Zτi := Xτi .

Example 3. (hitting constant boundaries of the jump size) The issue with Example 2 is

that the absolute jump size of the observed price Zτi is α. On the contrary, in practice

the absolute jump size can actually be bigger than the tick size α. In the notation

of Robert and Rosenbaum (2011), for any positive integer i, we introduce a discrete

variables Li which corresponds to the observed price jump’s tick number between τi−1

and τi, with Li ≥ 1. The arrival times are defined recursively as τ0 := 0 and for any
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positive integer i

τi := inf
{
t > τi−1 : Xt = Xτi−1

− Li−1α or Xt = Xτi−1
+ Li−1α

}
We assume that Li are IID and independent of the other quantities. We finally assume

that Zτi := Xτi . The up and down processes are piecewise constant in t and constant

in s, defined for any s ≥ 0 as

dt(s) = −Li−1α for t ∈ (τi−1, τi]

ut(s) = Li−1α for t ∈ (τi−1, τi]

Example 4. (model with uncertainty zones) We go one step further Example 3 and

introduce now the model with uncertainty zones of Robert and Rosenbaum (2011). In

a frictionless market, we can assume that a trade with change of price Zτi will occur

whenever the efficient price process crosses one of the mid-tick values Zτi−1
+ α

2
or

Zτi−1
− α

2
. In that case, if the efficient price process hits the former value, we would

observe an increment of the observed price Zτi = Zτi−1
+α and if it hits the latter value,

we would observe a decrement Zτi = Zτi−1
− α. There are two reasons why in practice

such a frictionless model is too simplistic. The first reason is that the absolute value

of the increment (or the decrement) of the observed price can be bigger than the tick

size α and was already pointed out in Example 3. We will thus keep the notation Li in

this example. The second reason is that the frictions induce that the transaction will

not exactly occur when the efficient process is equal to the mid-tick values. For this

purpose in the notation of Robert and Rosenbaum (2012), let 0 < η < 1 be a parameter

that quantifies the aversion to price changes of the market participants. If we let X(α)
t

be the value of Xt rounded to the nearest multiple of α, the sampling times are defined

recursively as τ0 := 0 and for any positive integer i

τi := inf
{
t > τi−1 : Xt = X(α)

τi−1
− α

(
Li−1 − 1

2
+ η

)
or Xt = X(α)

τi−1
+ α

(
Li−1 − 1

2
+ η

)}
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The observed price is equal to the rounded efficient price Zτi := X
(α)
τi . The time process

X
(t)
t is again equal to the price process Xt itself in this model. The up and down

processes are piecewise constant in t and constant in s, defined for any s ≥ 0 as

dt(s) = −Li−1α1{Xτi−1<Xτi−2} − (2η + Li−1 − 1)α1{Xτi−1>Xτi−2} for t ∈ (τi−1, τi]

ut(s) = Li−1α1{Xτi−1>Xτi−2} + (2η + Li−1 − 1)α1{Xτi−1<Xτi−2} for t ∈ (τi−1, τi]

where 1A is the indicator function of A. Note that in the case where η = 1
2
, we are back

to Example 3.

Example 5. (times generated by hitting an irregular grid model) The fourth model

we are looking at is called times generated by hitting an irregular grid model. We

follow the notation of Fukasawa and Rosenbaum (2012) and consider the irregular grid

G = {pk}k∈Z, with pk < pk+1. We set τ0 = 0 and for i ≥ 1

τi = inf
{
t > τi−1 : Xt ∈ G − {Xτi−1

}
}
,

where G − {Xτi−1
} is the set obtained by removing {Xτi−1

} from G. We can rewrite it

as an element of the HBT model where the time process is equal to the price process,

and for all s ≥ 0 the up and down processes are defined as

dt(s) = pk−1 − pk for t ∈ (τi−1, τi]

ut(s) = pk+1 − pk for t ∈ (τi−1, τi],

where k is the (random) index such that pk = Xτi−1
.

Example 6. (structural autoregressive conditional duration model) There have been

several drafts for this model. We follow here a former version (Renault, van der Heijden

and Werker (2009)), because we can directly express it as an element of the HBT model1.

1Generating the sampling times (2.1) of the HBT model as a first hitting-time of a unique barrier
instead of the first hitting time of one of two barriers as in the latter version of Renault et al. (2014)
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In the structural autoregressive conditional duration model, the time τi when the next

event occurs is given by τ0 = 0 and for i > 0

τi = inf
{
t > τi−1 : At − Aτi−1

= d̃τi−1
or At − Aτi−1

= c̃τi−1

}
where At is a standard Brownian motion (not necessarily independent of Xt). Expressed

as an element of the HBT model, we have that the time process X(t)
t is equal to the

Brownian motion At and for all s ≥ 0

dt(s) = d̃τi−1
for t ∈ (τi−1, τi]

ut(s) = c̃τi−1
for t ∈ (τi−1, τi].

2.3.2 Possible extensions of the model with uncertainty zones

The model with uncertainty zones of Robert and Rosenbaum (2011) introduced in

Example 4, which is semi-parametric, assumes that the observed price is the efficient

price rounded to the nearest tick value Zτi = X
(α)
τi and thus the noise is equal to εi :=

α(1
2
−η) if the last trade increased the price and εi := −α(1

2
−η) if the last trade decreased

the price. In particular, the noise is auto-correlated and correlated to the efficient

price. Because of this specific noise distribution, it is directly possible to estimate the

underlying friction parameter η without any data pre-processing such as preaveraging

(see Robert and Rosenbaum (2012)). We believe the model with uncertainty zones

is a very interesting starting point, because all the endogenous and noise structure

of the model is reduced to the estimation of the 1-dimensional friction parameter η.

Nevertheless, as this semi-parametric model wants to be the simplest, it suffers from

several issues. We will investigate two of them in the following.

First, the model doesn’t allow for asymmetric information between the buyers and

wouldn’t change much the proofs of Chapter 2, but we chose the two-boundaries setting because it
seems more natural if interpretation of time processes, up processes and down processes is needed.
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the sellers. Define η+ and η−, which are respectively the aversion to a positive price

change and a negative price change. As a positive price change means that a buyer

decided to put an order at the best ask price and a negative price change corresponds

to a seller that puts an order at the best bid price (if we assume that cancel and repost

orders are not the reason why the price changed), the difference η+ − η− can be seen

as a measure of information asymmetry. We define τ0 := 0 and recursively for i any

positive integer

τi := inf
{
t > τi−1 : Xt = X(α)

τi−1
− α

(
Li − 1

2
+ η−

)
or Xt = X(α)

τi−1
+ α

(
Li − 1

2
+ η+

)}
.

Note that the HBT class contains this model and that it can be directly fitted if we

slightly modify η̂ in Robert and Rosenbaum (2012) to estimate η+ and η−. One possible

application would be to build a test of asymmetric information η+ := η−. This is beyond

the scope of Chapter 2.

One other issue is that the authors don’t do any model checking in their work.

According to their empirical work (see pp.359-361 of Robert and Rosenbaum (2011)),

the estimated values for η are stable accross days for the ten French assets tested.

Stability of η favors their model but by doing so, the model doesn’t allow any other

structure than the full-endogeneity for the sampling times. Even if the true structure

of sampling times is (mostly) independent of the asset price, we will still estimate an

η that will be stable across days. If we allow the time process to be different from

the price process itself, we can estimate the correlation ρ1,3 between them and see

how endogenous the sampling times are (the bigger
∣∣ρ1,3∣∣ is, the more endogenous the

sampling times are). We would need to add more general microstructure noise in the

model, and thus this is left for further work.

18



www.manaraa.com

2.4 Main result

2.4.1 Assumptions and Theorem

Without loss of generality, we fix the horizon time T := 1, and we consider [0, 1] to

represent the course of an economic event, such as a trading day. We first introduce the

definition of stable convergence, which is a little bit stronger than usual convergence

in distribution and needed for statistical purposes of inference, such as the prediction

value of the high-frequency covariance and the construction of a confidence interval at

a given confidence level.

Definition 1. We suppose that the random processes Yt, μt and σt are adapted to a

filtration (Ft). Let Zn be a sequence of F1-measurable random variables. We say that

Zn converges stably in distribution to Z as n → ∞ if Z is measurable with respect to

an extension of F1 so that for all A ∈ F1 and for all bounded continuous2 functions f ,

E [1Af (Zn)] → E [1Af (Z)] as n→ ∞.

In the setting of Section 2.2, the target of inference, the integrated covariation, can

be written for all t ∈ [0, 1] as

〈X(1), X(2)〉t :=
∫ t

0

σ(1)
s σ(2)

s ρ1,2s ds.

We are providing now the asymptotics. We want to make the number of observations

go to infinity asymptotically. The idea is to scale and thus keep the structure that

drives the next return and the next observation time, while making the tick size vanish

(and thus the number of observations explode on [0, 1]). Formally, we let the tick size

2Note that the continuity of f refers to continuity with respect to the Skorokhod topology of D[0, 1].
Nevertheless, we can also use continuity given by the sup-norm, because all our limits are in C[0, 1].
One can look at Chapter V I of Jacod and Shiryaev (2003) as a reference. For further definition of
stable convergence, one can look at Rényi (1963), Aldous and Eagleson (1978), Chapter 3 (p. 56) of
Hall and Heyde (1980), Rootzén (1980), and Section 2 (pp. 169-170) of Jacod and Protter (1998).
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α > 0 and we define the observation times Tα :=
{
τ
(k)
i,α

}k=1,2

i≥0
such that for k = 1, 2 we

have τ (k)0,α := 0 and for i any positive integer

τ
(k)
i,α := inf

{
t > τ

(k)
i−1,α : ΔX

(t,k)
t /∈ [

αd
(k)
t (t− τ

(k)
i−1,α), αu

(k)
t (t− τ

(k)
i−1,α)

]}
.

We define the HY estimator when the tick size is equal to α

〈 ̂X(1), X(2)〉HY
t,α :=

∑
0<τ

(1)
i,α , τ (2)j,α<t

ΔX
(1)

τ
(1)
i,α

ΔX
(2)

τ
(2)
j,α

1{
[τ

(1)
i−1,α,τ

(1)
i,α )∩[τ (2)j−1,α,τ

(2)
j,α) �=∅

}. (2.2)

We now give the assumptions needed to prove the central limit theorem of (2.2). We

need to introduce some definitions for this purpose. In view of the different models

introduced in Section 2.3, there are three different possible assumptions regarding the

correlation between the time processes X(t)
t and the price processes Xt. The first pos-

sibility is that they can be equal for all 0 ≤ t ≤ T . In this case we define λmin
t the

smallest eigen-value of (σ(i,j)
t )j=1,2

i=1,2 . The second scenario is that for one k ∈ 1, 2 we have

X
(k)
t := X

(t,k)
t , but the other time process is different from its associated price process.

In that case, we define λmin
t the smallest eigen-value of (σ(i,j)

t )
j∈{1,2,3,4}−{k+2}
i∈{1,2,3,4}−{k+2} . The third

possible setting is that the time process is different from its associated asset price for

both assets, and we let λmin
t the smallest eigen-value of σt in that case. Assumption (A1)

provides conditions on the price processes X(1)
t and X(2)

t , the time processes X(t,1)
t and

X
(t,2)
t as well as their covariance matrix σt. There are two types of assumptions in (A1).

First, we want to get rid of the drift in the proofs, and this will be done using condition

(A1) together with the Girsanov theorem and local arguments (see e.g. pp.158-161

in Mykland and Zhang (2012)). This is a very standard assumption in the literature

of high-frequency statistics. Furthermore, we assume that the covariance matrix σt is

continuous.

Assumption (A1). The drift μt, the volatility matrix σt and the (four dimensional)

Brownian motion Wt are adapted to a filtration (Ft). Also, μt is integrable and locally

20



www.manaraa.com

bounded. Furthermore, σt is continuous. Finally, we assume that inf
t∈(0,1]

λmin
t > 0 a.s.

The following condition roughly assumes that both time processes can’t be equal to

each other, even on a very small time interval. Specifically, we will assume that there

is a constant stricly smaller than 1 such that the module of the instantaneous high-

frequency correlation ρ3,4t can’t be bigger than this constant. In practice, assumption

(A2) is harmless.

Assumption (A2). For all t ∈ [0, 1]

ρ3,4t ∈ [ρ3,4− , ρ3,4+ ], (2.3)

where max(| ρ3,4− |, | ρ3,4+ |) < 1

The next assumption deals with the down process dt and the up process ut. It is

clear that dt and ut have to be known with information at time t, which is why we

assume that they are adapted to (Ft). The rest of assumption (A3) is very technical

and we only try to be as general as we can with respect to the proof techniques we will

use. The reader should understand Assumption (A3) as “assume the worst dependence

structure possible between the return ΔXτi and the time increment Δτi, knowing that

they follow the HBT model”. We insist once again on the fact that we only make the

dependence structure as bad as we can in our model so that we can investigate how

biased the HY estimator can be in practice, and how much the estimates of the variance

assuming no endogeneity are wrong.

Assumption (A3). For both assets k = 1, 2, define the couple of the down process

and the up process g(k)t := (d
(k)
t , u

(k)
t ) and let gt := (g

(1)
t , g

(2)
t ). We assume that

g(k) : R+ → (R+ → R− × R+)

t 
→ g
(k)
t

is adapted to (Ft). Moreover, there exists two non-random constants 0 < g− < g+ such
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that a.s. for any t ∈ [0, 1] and for any s ≥ 0

g− ≤ min(−d(k)t (s), u
(k)
t (s)) ≤ max(−d(k)t (s), u

(k)
t (s)) ≤ g+ (2.4)

Furthermore, there exists non-random constants K > 0 and d > 1/2 such that a.s.

∀s ≥ K , gt (s) = gt (K) , (2.5)

∀t ≥ 0, gt is differentiable and ∀s ≥ 0, max
(|(d(k)t )′(s)|, |(u(k)t )′(s)|) ≤ K, (2.6)

∀ (u, v) ∈ [0, 1]2 s.t. 0 < u < v, ‖gv − gu‖∞ ≤ K|v − u|d, (2.7)

where ‖(f1, f2)‖∞ = sup
w≥0

max (|f1 (w) |, |f2 (w) |).

Remark 1. Consider the space C of constants defined in Assumption (A3)

C :=
{
(g−, g+, K, d) s.t. 0 < g− < g+ , K > 0 , d >

1

2

}
.

For any c ∈ C, we define G(c) to be the functional subspace of R+ → (R+ → R−×R+)2

such that ∀g ∈ G, g satisfies (2.4), (2.5), (2.6) and (2.7). When there is no room for

confusion, we use G. Assumption (A3) is equivalent to

∃c ∈ C s.t. ∀t ∈ [0, 1] , gt ∈ G(c).

Remark 2. The advised reader will have noticed that Example 3, Example 4, Exam-

ple 5 and Example 6, where time processes are piecewise-constant, don’t follow the

assumption (A3). Nonetheless, because of the IID structure (respectively Markovian

structure) in the size of the jumps in Example 3 (Example 4), the proofs of this work

can adapt straightforwardly, and we can still use the results of this chapter. Also, we
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can add Markovian conditions in Example 5 and Example 6 so that all the techniques

of this chapter would apply to them too. We have made the choice not to state more

general conditions to keep tractability of Assumption (A3).

The last assumption is only technical, and also appears in the literature (Mykland

and Zhang (2012), Li et al. (2014)).

Assumption (A4). The filtration (Ft) is generated by finitely many Brownian mo-

tions.

We can now state the main theorem.

Theorem 1. Assume (A1) − (A4). Then, there exist processes ABt and AVt adapted

to (Ft) such that stably in law as the tick size α → 0,

α−1
(
〈 ̂X(1), X(2)〉HY

t,α − 〈X(1), X(2)〉t
)
→ ABt +

∫ t

0

(AVs)
1/2 dZs, (2.8)

where Zt is a Brownian motion independent of the underlying σ-field. The asymptotic

bias ABt and the asymptotic variance AVt are defined in Section 2.4.3 and estimated

in Section 2.5.

Remark 3. (path-bias) Note that the asymptotic bias term ABt on the right-hand side

of (2.8) doesn’t mean that the Hayashi-Yoshida estimator is biased, but rather path-

biased. The latter is a weaker statement which means that once we have seen a path,

there is a bias for the HY estimator on this specific path of value ABt. In practice,

we only get to see one path and thus bias and path-bias can be confused easily. When

doing simulations, we can observe many paths and the reader should keep in mind that

the path-bias will be different for each path. In addition, note that if we assume that σt
is bounded and bounded away from 0 on [0, T ], there is no bias in Theorem 1 because

E[ABt] = 0.

Remark 4. (convergence rate) At first glance, the convergence rate α−1 looks different

from the optimal rate of convergence n1/2 we obtain in the no-endogeneity case. This
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is merely a change of perspective because we are looking from the tick size point-of-

view. Actually, if for k = 1, 2 we define N (k)
t,α as the number of observations before t of

the kth asset and the sum of observations of both processes N (S)
t,α := N

(1)
t,α + N

(2)
t,α , we

have that N (S)
t,α is exactly of order Op(α

−2). Thus, if we define the expected number of

observations n := E
[
N

(S)
t,α

]
, we obtain the optimal rate of convergence n

1
2 in (2.8).

Remark 5. (arbitrary number of assets) We chose for simplicity to work only with

two assets, but we conjecture that this result would stay true for an arbitrary number

of assets, and that our proofs would adapt to show it, at the cost of more involved

notations and definitions.

2.4.2 Definition of the bias-corrected HY estimator

Assume that we have a consistent estimator3 ÂBt,α of the bias ABt,α := α
( ∫ t

0
AB

(1)
s

dX
(1)
s +

∫ t

0
AB

(2)
s dX

(2)
s

)
. Such an estimator will be provided in Section 2.5. We define

the new estimator 〈 ̂X(1), X(2)〉BC
t,α of high-frequency covariance as the estimate obtained

when removing the bias estimate ÂBt,α from the Hayashi-Yoshida estimator

〈 ̂X(1), X(2)〉BC
t,α := 〈 ̂X(1), X(2)〉HY

t,α − ÂBt,α. (2.9)

With the bias-corrected estimator 〈 ̂X(1), X(2)〉BC
t,α , we get rid of the asymptotic bias and

keep the same asymptotic variance as we can see in the following corollary.

Corollary 2. Assume (A1)− (A4). Then, stably in law as α → 0,

α−1
(
〈 ̂X(1), X(2)〉BC

t,α − 〈X(1), X(2)〉t
)
→

∫ t

0

(AVs)
1/2 dZs. (2.10)

3ÂBt,α is consistent means that α−1ÂBt,α = α−1ABt,α + op(1)
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2.4.3 Computation of the theoretical asymptotic bias and asymptotic

variance

We warn the reader interested in implementing the bias-corrected estimator that this

section is highly technical and we advise her to go directly to Section 2.5 and refer to

this section only for the definitions. On the contrary, if the reader wants to understand

the main ideas of the proofs, she should take this section as a reference. We also want

to emphasize on the fact that the theoretical values of asymptotic bias and asymptotic

variance found at the end of this section are rather abstract and don’t shed easily light

on how the change of parameters σt and gt in the model would influence the asymptotic

bias and asymptotic variance. The main purpose of this work is that we don’t need to

know the theoretical values in order to compute the estimators in Section 2.5

We need to introduce some definitions in order to compute the theoretical asymp-

totic bias ABt and the asymptotic variance term AVt. We first need to rewrite the HY

estimator (2.2) in a different way. For any positive integer i, consider the ith sampling

time of the first asset τ (1)i−1,α. We define two times, τ−i−1,α and τ+i−1,α, which are func-

tions of τ (1)i−1,α and all the observation times of the second asset {τ (2)j,α}j≥0, and which

correspond respectively to the closest sampling time of the second asset that is strictly

smaller than τ
(1)
i−1,α

4, and the closest sampling time of the second asset that is (not

necessarily strictly) bigger than τ (1)i−1,α

τ−i−1,α = max{τ (2)j,α : τ
(2)
j,α < τ

(1)
i−1,α}, (2.11)

τ+i−1,α = min{τ (2)j,α : τ
(2)
j,α ≥ τ

(1)
i−1,α}. (2.12)

4Connoisseurs will have noticed that τ−i−1,α is not a Ft-stopping time, which will not be a problem
in the proofs
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We consider ΔX
(2)

τ−,+
i,α

the increment of the second asset between τ−i−1,α and τ+i,α

ΔX
(2)

τ−,+
i,α

:= ΔX
(2)

[τ−i−1,α,τ
+
i,α]
. (2.13)

Rearranging the terms in (2.2) gives us (except for a few terms at the edge)

〈 ̂X(1), X(2)〉t,α =
∑
τ+i,α<t

ΔX
(1)

τ
(1)
i,α

ΔX
(2)

τ−,+
i,α

. (2.14)

The representation in (2.14) is very useful in the sense that it gives a natural order

between the terms in the sum. Nevertheless, any term of this sum is a priori correlated

with the other terms. We will rearrange once again the terms in (2.14), so that each

term is only correlated with the previous and the next term of the sum. In this case, we

say that they are 1-correlated. For this purpose, we need to introduce some notation.

We remind the reader that Tα is the two-dimensional vector of sampling times, where

for each k = 1, 2 the kth component T
(k)
α is equal to the sequence of sampling times

associated with the kth asset. We will construct a subsequence T1C
α of T(1)

α that also

depends on the observation times of the second asset T
(2)
α , and will be such that we

can write the Hayashi-Yoshida estimator as a 1-correlated sum similar to (2.14), except

the new sampling times τ 1Ci,α will replace the original observation times τ (1)i,α . The new

sampling times τ 1Ci,α are obtained using the following algorithm. We define τ 1C0,α := τ
(1)
0,α,

and recursively for i any nonnegative integer

τ 1Ci+1,α := min
{
τ (1)u,α : there exists a nonnegative integer j such that

τ 1Ci,α ≤ τ
(2)
j,α < τ (1)u,α

}
. (2.15)

In words, if we sit at the observation time τ 1Ci,α of the first asset, we wait first to hit

an observation time of the second asset, and we then choose the next strictly bigger
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observation time of the first asset. In analogy with (2.11), (2.12) and (2.13), we define

the following times

τ 1C,−
i−1,α := max{τ (2)j,α : τ

(2)
j,α < τ 1Ci−1,α}, (2.16)

τ 1C,+
i−1,α := min{τ (2)j,α : τ

(2)
j,α ≥ τ 1Ci−1,α}, (2.17)

ΔX
(2)

τ1C,−,+
i,α

:= ΔX
(2)

[τ1C,−
i−1,α,τ

1C,+
i,α ]

. (2.18)

First, observe that, except for maybe a few terms at the edge, we can rewrite (2.14) as

̂〈X(1), X(2)〉t,α =
∑

τ1C,+
i,α <t

ΔX
(1)

τ1Ci,α
ΔX

(2)

τ1C,−,+
i,α

. (2.19)

Also, we define the following compensated increments of the HY estimator

Ni,α = ΔX
(1)

τ1Ci,α
ΔX

(2)

τ1C,−,+
i,α

−
∫ τ1Ci,α

τ1Ci−1,α

ζ1,2s ds. (2.20)

Note that they are compensated in the sense that they are centered (if we decompose

ΔX
(2)

τ1Ci,α
into a left (−), a central and a right (+) part and condition the expectation,

this is straightforward to show). Similarly, we can show that they are 1-correlated.

The idea of the proof is the following. If we consider the volatility matrix σt and

the grid function gt to be constant over time, we can express the conditional returns of

the normalized error of HY as a homogeneous Markov chain (of order 1), show that the

Markov chain is uniformly ergodic and thus use results in the limit theory of Markov

chains (see, e.g., Meyn and Tweedie (2009)) to show that it has a stationary distribution.

Then, we prove that we can approximate locally the returns of the normalized error

when the volatility matrix and grid function are not constant by the returns when

holding them constant on a small block. Finally, using limit theory techniques developed

in Mykland and Zhang (2012) together with standard probability results of conditional

distribution (see, e.g., Breiman (1992)), we can bound uniformly in time the error of
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the returns when holding the volatility matrix and grid function constant.

We define now all the previous quantities assuming the volatility matrix σt and the

grid function gt are constant. For that purpose, let W̃t be a four dimensional Wiener

process, c := (g−, g+, K, d) a four-dimensional vector such that c ∈ C and σ̃ a constant

volatility matrix such that the associated λ̃min, which is the analog of λmin
t defined

in Section 2.4.1 when we replace σt by σ̃, is stritcly bigger than 0 and g̃ ∈ G(c) a

constant grid function. In analogy with the definition of the grid function gt in (A3),

we assume that g̃ can be written in terms of the down and up functions of both assets,

i.e. g̃ := (g̃(1), g̃(2)) where for each k = 1, 2 we have g̃(k) := (d̃(k), ũ(k)). Also, we

introduce Sg̃ the subspace of R2 defined as

Sg̃ := {(y, v) ∈ R× R+ s.t. d̃(2)(v) ≤ y ≤ ũ(2)(v)}.

If we set X̃ = σ̃W̃ and the corresponding sampling times of both assets T̃ := (T̃(1), T̃(2)),

where for k = 1, 2 we have T̃ (k) := {τ̃i}i≥0, we define the observation times of the first

asset as τ̃ (1)0 := 0 and recursively for i any positive integer

τ̃
(1)
i := inf

{
t > τ̃

(1)
i−1 : ΔX̃

(3)
t /∈ [d̃(1)(t− τ̃

(1)
i−1), ũ

(1)(t− τ̃
(1)
i−1)]

}
.

These stopping times will be seen as approximations of the observation times of the first

asset when we hold the volatility matrix σt and the grid gt constant. We will always

start our approximation at a 1-correlated observation time τ 1Ci,n , which corresponds to

an observation time of the first asset. As the sampling times of the second asset are not

synchronized with the ones from the first asset, we need two more quantities (x, u) ∈ Sg̃

to approximate the observation times of the second asset. They correspond respectively

to the increment of the second asset’s time process X(t,2)
t since the last observation of

the second asset occured and the time elapsed since the last observation time of the
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second asset. We define τ̃ (2)0 := 0,

τ̃
(2)
1 := inf

{
t > 0 : x+ΔX̃

(4)
t /∈ [d̃2(t+ u), ũ2(t+ u)]

}
,

and for any integer i ≥ 2

τ̃
(2)
i := inf

{
t > τ̃

(2)
i−1 : ΔX̃

(4)
t /∈ [d̃2(t− τ̃

(2)
i−1), ũ2(t− τ̃

(2)
i−1)]

}
.

Similarly, we define the analogs of (2.11), (2.12), (2.13), (2.15), (2.16), (2.17), (2.18)

and (2.20) respectively as τ̃−i−1, τ̃
+
i−1, ΔX̃

(2)

τ̃−,+
i

, τ̃ 1C,−
i−1 , τ̃ 1C,+

i−1 , ΔX̃(2)

τ̃1C,−,+
i

and Ñi by putting

tildes on the quantities of the definitions.

We can now define the instantaneous variance of the normalized HY estimate’s

error (2.21), which depends on the volatility matrix σ̃ and the grid g̃. Similarly, we also

define the instantaneous covariance between the normalized HY’s error and the first

asset price (2.22), and the instantaneous covariance between the error and the second

asset price (2.23). Finally, we define the instantaneous 1-correlated time, which is the

approximation of Eτ1Ci,n

[
Δτ 1Ci+2

]
, where if τ is a (Ft)-stopping time, Eτ [Y ] is defined as

the conditional distribution of Y given Fτ .

ψAV (σ̃, g̃, x, u) := E
[
Ñ2

2 + 2Ñ2Ñ3

]
, (2.21)

ψAC1(σ̃, g̃, x, u) := E
[
Ñ2ΔX̃

(1)

τ̃1C2

]
, (2.22)

ψAC2(σ̃, g̃, x, u) := E
[
Ñ2ΔX̃

(2)

τ̃1C,−,+
2

]
, (2.23)

ψτ (σ̃, g̃, x, u) := E
[
Δτ̃ 1C2

]
. (2.24)

Set Z̃0 := (x, u) and for any positive integer i

Z̃i :=
(
ΔX̃

(4)

[τ̃1C,−
i ,τ̃1Ci ]

, τ̃ 1Ci − τ̃ 1C,−
i

)
. (2.25)

For any nonnegative integer i, we consider π̃i(σ̃, g̃, x, u) the distribution of Z̃i. We
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also introduce the notation Π(σ̃, g̃, x, u) := {π̃i(σ̃, g̃, x, u)}i≥0. By the strong Markov

property of Brownian motion, we can show that Z̃i is a homogeneous Markov chain (of

order 1) on the state space Sg̃. In the following lemma, we show that there exists a

stationary distribution of π̃i(σ̃, g̃, x, u).

Lemma 3. Let c := (g−, g+, K, d) be a four-dimensional vector such that c ∈ C and

consider σ̃ a constant volatility matrix such that λ̃min > 0 and g̃ ∈ G(c) a constant grid.

Then, there exists a stationary distribution π̃(σ̃, g̃).

The proof of Lemma 3 can be found in the Appendix (proof of Lemma 14). The next

definition is the average (regarding the stationary distributions) of the instantaneous

variance, covariances and 1-correlated time. For any θ ∈ {AV, AC1, AC2, τ},

φθ (σ̃, g̃) :=

∫
R2

ψθ (σ̃, g̃, y, v) dπ̃ (σ̃, g̃) (y, v) .

We introduce the notation φθ
s := φθ (σs, gs) and consider the following quantities needed

to compute the asymptotic bias and variance.

k(1)s :=
(
σ(1)
s

)−2
φAC1
s

(
φτ
s

)−1
, (2.26)

k1,⊥s :=
(
1− (ρ1,2s )2

)−1(
(σ(2)

s )−2φAC2
s − (σ(1)

s σ(2)
s )−1ρ1,2s φAC1

s

)(
φτ
s

)−1
. (2.27)

We express now AVs the quantity integrated to obtain the asymptotic variance.

AVs :=
(
φAV
s + 2

(
k(1)s (σ(1)

s )−1σ(2)
s ρ1,2s φAC1

s − (k(1)s + k1,⊥s )φAC2
s

))(
φτ
s

)−1 (2.28)

+
(
σ(1)
s

)2(
k(1)s

)2
+
(
σ(2)
s

)2(
1− (ρ1,2s )2

)(
k1,⊥s

)2
.
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The asymptotic bias is defined as ABt :=
∫ t

0
AB

(1)
s dX

(1)
s +

∫ t

0
AB

(2)
s dX

(2)
s where

AB(1)
s := k(1)s − k1,⊥s ρ1,2s σ(2)

s

(
σ(1)
s

)−1
, (2.29)

AB(2)
s := k1,⊥s . (2.30)

Remark 6. (asymptotic bias) Looking at the expressions for AB(1)
s and AB(2)

s , one can

be tempted to think that because of the
(
1−(ρ1,2s )2

)−1 term in k1,⊥s , the bias will increase

drastically when both assets are highly correlated. In this case, the reader should keep

in mind that the second term of AB(1)
s , when integrated with respect to X

(1)
s , and

AB
(2)
s , when integrated with respect to X(2)

s , will be roughly of the same magnitude,

with opposite signs, and thus there is no explosion of asymptotic bias. We chose the

above asymptotic bias’ representation because it is straightforward to build estimators

from it. We can also express the asymptotic bias differently. For this purpose, we can

rewrite the log-price process as

dX
(1)
t = σ

(1)
t dB

(1)
t ,

dX
(2)
t = ρ1,2t σ

(2)
t dB

(1)
t +

(
1− (ρ1,2t )2

)1/2
σ
(2)
t dB1,⊥

t ,

where B(1)
t and B1,⊥

t are independent Brownian motions. Let

dX1,⊥
t =

(
1− (ρ1,2t )2

)1/2
σ
(2)
t dB1,⊥

t (2.31)

be the part of X(2)
t that is not correlated with X

(1)
t . We can express the asymptotic

bias as ABt =
∫ t

0
ÃB

(1)

s dX
(1)
s +

∫ t

0
ÃB

(2)

s dB1,⊥
s . In this case, ÃB

(1)

s = k
(1)
s and

ÃB
(2)

s = lim
n→∞

〈Mn, B1,⊥〉s

where Mn is defined in the proofs. We can show that this limit exists, and does not

explode when both assets are highly correlated.
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2.5 Estimation of the bias and variance

We need to introduce some new notations. We recall that N (1)
1,α is the number of obser-

vations corresponding to the first asset before 1 and we also define N1C
1,α the number of

1-correlated observations before 1, i.e. N1C
1,α := max{i ∈ N s.t. τ 1Ci,α < 1}. In practice,

the first step is to transform the returns of the first asset

{
(ΔX

(1)

τ
(1)
i,α

,Δτ
(1)
i,α )

}N
(1)
1,α

i=1

into 1-correlated returns {
(ΔX1C

τ1Ci,α
,Δτ 1Ci,α )

}N1C
1,α

i=1

using algorithm (2.15). Then, for each asset, we will chop the data into Bn blocks and

on each block i = 1, . . . , Bn we will estimate ÂV i,α, ÂB
(1)

i,α and ÂB
(2)

i,α, pretending that

the volatility matrix σt and grid gt are block-constant.

Because there is asynchronicity in the observation times, the blocks of each asset

are not exactly equal. Let hn be the block size. For the first asset, we consider block

1(1) := [0, τ 1Chn,α
], block 2(1) := [τ 1Chn,α

, τ 1C2hn,α
], . . . , block B

(1)
n−1 := [τ 1C(Bn−2)hn,α

, τ 1C(Bn−1)hn,α
],

block B
(1)
n := [τ 1C(Bn−1)hn,α

, 1]. For the second asset, we let block 1(2) := [τ 1C,+
0,α , τ 1C,+

hn,α
],

block 2(2) := [τ 1C,+
hn,α

, τ 1C,+
2hn,α

], . . . , block B
(2)
n−1 := [τ 1C,+

(Bn−2)hn,α
, τ 1C,+

(Bn−1)hn,α
], block B

(2)
n :=

[τ 1C,+
(Bn−1)hn,n

, 1]. In the following, we will say j ∈ block i(1) when τ
(1)
j,α ∈ block i(1).

Similarly, we say j ∈ block i(2) when τ
(2)
j,n ∈ block i(2). Finally, we define j ∈ block i if

j ∈ {(i − 1)hn + 1, . . . , ihn}. First, we estimate the volatility of both assets using the

corrected estimator in Li et al. (2014). To do this, we need to define an estimate of the

spot volatility on each block for each asset k = 1, 2

σ̃
(k)
i,α :=

( ∑
j∈block i(k)

(ΔX
(k)

τ
(k)
j,α

)2
)1/2

.
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Then, we estimate the asymptotic bias of the volatility

ÂBσ
(k)

i,α =
2

3(σ̃
(k)
i,α )

2

∑
j∈block i(1)

(ΔX
(k)

τ
(k)
j,α

)3.

We obtain the bias-corrected estimators of volatility on each block

σ̂
(k)
i,α = σ̃

(k)
i,α − ÂBσ

(k)

i,α .

Then, we estimate the correlation between both assets using the naive HY estimator

ρ̂1,2i,α =
1

σ̂
(1)
i,α σ̂

(2)
i,α

∑
j∈block i

ΔX
(1)

τ1Cj,α
ΔX

(2)

τ1C,−,+
j,α

.

We then build an estimator of the compensated increments of the HY estimator, fol-

lowing the definition in (2.20),

N̂i,α = ΔX
(1)

τ1Ci,α
ΔX

(2)

τ1C,−,+
i,α

−Δτ 1Ci,α σ̂
(1)
i,α σ̂

(2)
i,α ρ̂

1,2
i,α.

The next step is to estimate the instantaneous variance (2.21), both instantaneous co-

variances (2.22) and (2.23) and the instantaneous 1-correlated time (2.24) on each block.

This is done by taking the sample average of the corresponding estimated quantities.

Note that we don’t directly estimate ψAV , ψAC1, ψAC2 and ψτ , but rather a scaling

version of them, i.e. α2
nψ

AV , αnψ
AC1, αnψ

AC2 and αnψ
τ . In practice, we can always

assume αn := 1 by scaling gt by the tick size, and thus we match the definitions of the

following estimators with (2.21)-(2.24). For the sake of simplicity, we assume that the

number of 1-correlated observations of the last block Bn is also hn. In practice, this will

be most likely different from hn, and thus the denominator of (2.32)-(2.35) will have to

be changed so that it is equal to the number of 1-correlated observations in this last
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block. The estimates are given by

φ̂AV
i,α := h−1

n

∑
j∈block i

N̂2
j,α + 2N̂j,αN̂j+1,α, (2.32)

φ̂AC1
i,α := h−1

n

∑
j∈block i

N̂j,αΔX
(1)

τ1Cj,α
, (2.33)

φ̂AC2
i,α := h−1

n

∑
j∈block i

N̂j,αΔX
(2)

τ1C,−,+
j,α

, (2.34)

φ̂τ
i,α := h−1

n

∑
j∈block i

Δτ 1Cj,α . (2.35)

We estimate now the quantities (2.26) and (2.27) as

k̂
(1)
i,α :=

(
σ̂
(1)
i,α

)−2
φ̂AC1
i,α

(
φ̂τ
i,α

)−1
, (2.36)

k̂1,⊥i,α :=
(
1− (ρ̂1,2i,α)

2
)−1(

(σ̂
(2)
i,α)

−2φ̂AC2
i,α − (σ̂

(1)
i,α σ̂

(2)
i,α)

−1ρ̂1,2i,αφ̂
AC1
i,α

)(
φ̂τ
i,α

)−1
. (2.37)

We follow (2.29) and (2.30) to estimate the bias integrated terms AB(1)
s and AB

(2)
s on

each block

ÂB
(1)

i,α := k̂
(1)
i,α − k̂1,⊥i,α ρ̂

1,2
i,ασ̂

(2)
i,α

(
σ̂
(1)
i,α

)−1
,

ÂB
(2)

i,α := k̂1,⊥i,α .

For the variance term AVs, we decide not to use the direct definition in (3.55) because

it can provide negative estimates. Instead, we will be using the following estimator

ÂV i,α :=
(( ∑

j∈block i

N̂j,α

)− k̂
(1)
i,α(X

(1)

τ1Cihn,α
−X

(1)

τ1C
(i−1)hn,α

)

−k̂⊥i,α
(
(X

(2)

τ1C,+
ihn,α

−X
(2)

τ1C,+
(i−1)hn,α

)− ρ̂1,2i,ασ̂
(2)
i,α(σ̂

(1)
i,α)

−1(X
(1)

τ1Cihn,α
−X

(1)

τ1C
(i−1)hn,α

)
))2

.
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We define the final estimators of asymptotic bias and asymptotic variance as

ÂBα :=
Bn∑
i=1

ÂB
(1)

i,α

(
X

(1)

τ1Cihn,α
−X

(1)

τ1C
(i−1)hn,α

)
+ ÂB

(2)

i,α

(
X

(2)

τ1C,+
ihn,α

−X
(2)

τ1C,+
(i−1)hn,α

)
, (2.38)

ÂV α :=
Bn∑
i=1

ÂV i,α

(
τ 1Cihn,α − τ 1C(i−1)hn,α

)
. (2.39)

As a corollary of Theorem 1, we obtain the following result, which states the consistency

of (2.38) and (2.39).

Corollary 4. There exists a choice of the block size hn5 such that we have the following

convergences when α → 0

α−1ÂBα
P→ AB1 (2.40)

α−2ÂV α
P→

∫ 1

0

AVsds. (2.41)

In particular, in view of Corollary 2, the bias-corrected estimator

〈 ̂X(1), X(2)〉BC
1,α := 〈 ̂X(1), X(2)〉HY

1,α − ÂBα

is such that

〈 ̂X(1), X(2)〉BC
1,α − 〈X(1), X(2)〉1
ÂV

1/2

α

→ N (0, 1). (2.42)

Remark 7. (exchanging X(1)
t and X

(2)
t ) When estimating the asymptotic bias and the

asymptotic variance, we considered one specific asset to be X(1)
t and the other one to

be X(2)
t . We could exchange X(1)

t and X
(2)
t , and find new estimators ÃBα and ÃV α

according to the previous definitions. One could then take ABα+ÃBt,α

2
(respectively

AVα+ÃV t,α

2
) as final estimators of asymptotic bias (asymptotic variance).

5the exact assumptions on hn can be found in the proofs of Theorem 1
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Remark 8. (optimal block size) In practice, the optimal block size hn is not straightfor-

ward to choose. On the one hand, hn should be as small as possible so that the volatility

matrix σt and the grid gt are almost constant on each block, and thus (2.32)-(2.35) are

less biased. On the other hand, we need as many observations as we can on each block,

so that the variance of approximations (2.32)-(2.35) is not too big. We are facing here

the usual bias-variance tradeoff.

2.6 Numerical simulations

We assume the same setting as the toy model described in Example 1, in two dimensions.

Thus, there exists a four-dimensional parameter θ := (θ
(1)
u , θ

(1)
d , θ

(2)
u , θ

(2)
d ) such that for

any t ≥ 0 and any s ≥ 0, u(1)t (s) := θ
(1)
u , d(1)t (s) := θ

(1)
d , u(2)t (s) := θ

(2)
u and d(2)t (s) := θ

(2)
d .

We assume that the two-dimensional price process (X
(1)
t , X

(2)
t ) has a null-drift. Also,

we assume that the volatility of the first process is σ(1)
t := 0.016 and the volatility of the

second process σ(2)
t := 0.02, and that the correlation between both assets is ρ1,2t := 0.2.

We set θ :=
(
0.0007, 0.0001, 0.0006, 0.0001

)
. According to this rule, a change of price

occurs whenever the price of the first (respectively second) asset increases by 0.07%

(0.06%) or decreases by 0.01% (0.01%). Finally, we assume that the price processes

(X
(1)
t , X

(2)
t ) and the time processes (X

(t,1)
t , X

(t,2)
t ) are equal.

We simulate price processes and observation times for 10 years of 252 business

days. We provide in Table 2.1 a summary of the comparison results between HY and

the bias-corrected HY. As expected from the theory, the RMSE is improved when

using the bias-corrected estimator. In addition, the sample bias is almost the same

when using HY and the bias-corrected estimator which is also expected from Remark

3. Furthermore, this sample bias tends to 0, which comes from the fact that both

estimators are consistent. Finally, the standardized feasible statistic (2.42) is reported

in Table 2.2 and plotted in Figure 2.1.
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No. years estim sample bias RMSE % Reduced RMSE

1 HY 5.41e− 07 1.36e− 05 -

1 BCHY 5.43e− 07 1.19e− 05 13%

2 HY 2.73e− 07 1.39e− 05 -

2 BCHY 2.74e− 07 1.23e− 05 12%

5 HY 1.10e− 07 1.42e− 05 -

5 BCHY 1.07e− 07 1.26e− 05 11%

10 HY 5.54e− 08 1.39e− 05 -

10 BCHY 5.53e− 08 1.20e− 05 14%

Table 2.1: Summary statistics based on simulated endogenous data of 1, 2, 5 and 10

years. The RMSE in the table corresponds to the square root of the squared distance

between the estimated value and the true value 6.4e − 05. HY stands for the usual

Hayashi-Yoshida estimator (1.5), and BCHY represents the bias-corrected estimator

(2.9).

No. years 0.5 % 2.5 % 5 % 95 % 97.5 % 99.5 %

1 -2.48 -1.99 -1.59 1.66 2.13 2.57

2 - 2.57 -1.83 -1.60 1.68 2.13 2.67

5 - 2.60 -1.96 -1.64 1.64 2.05 2.62

10 - 2.68 - 1.98 -1.60 1.65 2.01 2.73

Table 2.2: In this table, we report the finite sample quartiles of the feasible standardized

statistic (2.42). The benchmark quartiles are those for the limit distribution N (0, 1).
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Figure 2.1: Histogram and Normal QQ-plot of the standardized estimates (2.42) on a

10-year period of observations.

2.7 Conclusion

We have introduced in this chapter the HBT model, and we have shown that it is

more general than some of the endogenous models of the literature. This model can be

extended to a model including more general noise structure in observations, and even

noise in sampling times. The model with noisy observations is introduced in Chapter

3.

Under this model, we have proved the central limit theorem of the Hayashi-Yoshida

estimator. Our main theorem states that there is an asymptotic bias. Accordingly,

we built a bias-corrected HY estimator. We also computed the theoretical standard
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deviation, and we provided consistent estimates of it. Numerical simulations show that

the new estimator performs better.

The techniques used for the proof of the main theorem can be applied to more

general models and to other problems such as the estimation of the integrated variance

of noise, integrated betas, etc. In particular, independence between the efficient price

process and the noise is not needed in the model. As long as we can approximate the

joint distribution of the noise and the returns by a Markov chain, ideas of our proof

can be used. This is also left for Chapter 3.

2.8 Appendix

2.8.1 Preliminary lemmas

Without loss of generality, we choose to work under the third scenario defined in Section

2.4, i.e. the asset price is different from the time process for both assets. Because we

shall prove stable convergence, and because of the local boundedness of σ (because by

(A1) σ is continuous), and that inft∈(0,1] λmin
t > 0 we can without loss of generarality

assume that for all t ∈ [0, 1] there exists some nonrandom constants σ− and σ+ such

that for any eigen value λt of σt

0 < σ− < λt < σ+ (2.43)

by using a standard localization argument such that the one used in Section 2.4.5 of

Mykland and Zhang (2012). One can further supress μ as in Section 2.2 (pp. 1407-1409)

of Mykland and Zhang (2009), and act as if X is a martingale.

We define the subspace M of matrices of dimension 4× 4 such that ∀M ∈ M, for

any eigen value λM of M , we have

σ− < λM < σ+ (2.44)
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and (MMT )
3,4

(MMT )4,4
∈ [ρ3,4− , ρ3,4+ ]. By (2.3) of (A2) and (2.43), we will assume in the following

that ∀t ∈ [0, 1], σt ∈ M.

We define σp the process (of dimension 4× 4) on R+ such that

{
σp
t = σt ∀t ∈ [0, 1]

σp
t = σ1 ∀t ∈ [1,∞)

Define now Xp the process such that for all t ≥ 0{
dXp

t = σp
t dWt

Xp
0 = X0

Because Xp andX have the same initial value and follow the same stochastic differential

equation on [0, 1], they are equalt for all t ∈ [0, 1]. For simplicity, we keep from now

the notation X for Xp.

In the following, C will be defining a constant which does not depend on i or n,

but that can vary from a line to another. Also, we are going to use the notation τ θi,n as

a subtitute of τ θi,αn
, where θ can take various names, such that (1), (2) and so on. Let

h : N → N a (not strictly) increasing non-random sequence such that

hn → +∞ (2.45)

hnαn → 0 (2.46)

To keep notation as simple as possible, we define τhi,n := τ 1Cihn,n
, τh,−i,n := τ 1C,−

ihn,n
, τh,+i,n :=

τ 1C,+
ihn,n

. We also let An := {i ≥ 1 s.t. τhi−1,n ≤ t}, where t ∈ [0, 1]. Also, we recall

the notation (X
(3)
t , X

(4)
t ) := (X

(t,1)
t , X

(t,2)
t ) Finally, for θ ∈ {(1), (2), 1C, h}, we define

sθn = sup
τθi,n<T

Δτ θi,n. We show that these quantities tend to 0 almost surely in the following

lemma.

Lemma 5. We have sθn
a.s.→ 0.

40



www.manaraa.com

Proof. We can follow the proof of Lemma 4.5 in Robert and Rosenbaum (2012) to prove

that for k ∈ {1, 2}, s(k)n
a.s.→ 0. Then, we can notice that a.s. s1Cn < s

(1)
n + s

(2)
n to deduce

that s1Cn
a.s.→ 0. To show that shn → 0, define the process Z such that Z0 = 0 and ∀i > 0

:

Zt :=

⎧⎨⎩ ΔX
(2)

[τ1Ci−1,n,t]
+ Zτ1Ci−1,n

∀t ∈ [τ 1Ci−1,n, τ
1C,+
i−1,n]

ΔX
(1)

[τ1C,+
i−1,n,t]

+ Zτ1C,+
i−1,n

∀t ∈ [τ 1C,+
i−1,n, τ

1C
i,n ]

Substituting X in Lemma 4.5 of Robert and Rosenbaum’s proof by our Z, we can follow

the same reasoning. The only main change will be that in their notation Mn ≤ Chnαn,

but this tends to 0 by (2.46).

Let f be a random process, s a random number, we define :

S (f, s) := sup
0≤u,v≤1,|u−v|≤s

∣∣∣fu − fv

∣∣∣
Lemma 6. Let f be a bounded random process such that for all non-random sequence

(qn)n≥0, if qn → 0, then S (f, qn)
P→ 0. Let also a random sequence (sn)n≥0 such that

sn
P→ 0. Then we have ∀l ≥ 1

S (f, sn)
Ll→ 0

Proof. As f is bounded, convergence in P implies convergence in Ll for any l ≥ 1.

Hence it is sufficient to show that S (f, sn)
P→ 0. Let η > 0 and ε > 0, we want to show

that ∃N > 0 such that ∀n ≥ N ,

P (S (f, sn) > η) < ε

∃ non-random χ > 0 such that P (S (f, χ) > η) < ε
2
. Also, ∃N > 0 such that ∀n ≥ N ,

P (sn ≥ χ) < ε
2
. Thus

P (S (f, sn) > η) = P (S (f, sn) > η, sn > χ) + P (s (f, sn) > η, sn ≤ χ)

≤ P (sn > χ) + P (S (f, χ) > η) < ε
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We aim to define the approximations of observation times on blocks

(
Ki,n := [τhi,n, τ

h
i+1,n]

)
i≥0

.

We need some definitions first. Let (C
(i)
t )i≥0 a sequence of independent 4-dimensional

Brownian motions (i.e. for each i, C(i)
t is a 4-dimensional Brownian motion), indepen-

dent of everything we have defined so far. We define ∀i, n ≥ 0,

Si,n
t :=

⎧⎨⎩ ΔW[τhi,n,τ
h
i,n+.] ∀t ∈ [0,Δτhi+1,n]

ΔW[τhi,n,τ
h
i+1,n]

+ C
(i)

t−Δτhi+1,n
∀t ≥ Δτhi+1,n

and (
τ̃ ki,j,n

)
j≥0;k=1,2

= T̃

(
Si,n, στhi,n , αngτhi,n ,ΔX

(4)

[τh,−i,n ,τhi,n]
, τhi,n − τh,−i,n

)
To keep symmetry in notations, we define for all integers i and n positive integers,(
τ
(1)
i,j,n

)
j≥0

consisting of the observation times of the process 1 after τhi,n, substracting

the value of τhi,n, i.e. τ (1)i,j,n = τ
(1)
i∗+j,n− τ (1)i∗,n where i∗ is the (random) index on the original

grid of process 1 corresponding to τhi,n (τ (1)i∗,n = τhi,n). For process 2, we define τ (2)i,0,n = 0

and for integers j ≥ 1, τ (2)i,j,n = τ
(2)
j∗+j−1,n − τ

(1)
i∗,n, where j∗ is the index on the original

grid of process 2 corresponding to the smallest observation time of process 2 bigger (not

necessarily strictly) than τhi,n. We also define τ−i,j,n, τ
+
i,j,n, τ 1Ci,j,n, τ

1C,−
i,j,n , τ 1C,+

i,j,n , τ̃−i,j,n, τ̃
+
i,j,n,

τ̃ 1Ci,j,n, τ̃
1C,−
i,j,n , τ̃ 1C,+

i,j,n following the construction we used to define (2.11), (2.12), (2.15),

(2.16) and (2.17). We also set

(π̃i,j,n)j≥0 = Π

(
Si,n, στhi,n , αngτhi,n ,ΔX

(4)

[τh,−i,n ,τhi,n]
, τhi,n − τh,−i,n

)
Lemma 7. For θ ∈ {(1), (2), 1C}, any real l > 0, any positive integer i and n, any
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non-negative integer j, we have 0 < C−
l < C+

l such that :

C−
l α

2l
n < E

[(
Δτ̃ θi,j,n

)l] ≤ C+
l α

2l
n (2.47)

where Δτ̃ θi,j,n := τ̃ θi,j,n − τ̃ θi,j−1,n and

C−
l α

2l
n < E

[(
Δτ

(k)
i,n

)l
]
≤ C+

l α
2l
n (2.48)

Proof. For θ ∈ {(1), (2)}, because of (7) and (2.43), we can deduce (2.47) using well-

known result on exit zone of a Brownian motion (see for instance Borodin and Salminen

(2002)). (2.48) can be deduced using Dubins-Schwarz theorem for continuous local

martingale (see, e.g. th. V.1.6 in Revuz and Yor (1999)). If θ = 1C writing Δτ̃ θi,j,n =(
τ̃ θ,+i,j−1,n − τ̃ θi,j−1,n

)
+
(
τ̃ θ,+i,j,n − τ̃ θ,+i,j−1,n

)
and working those two terms, we can obtain (2.47)

and (2.48).

Now, we define for θ ∈ {(1), (2), 1C, h} the number of observation times before t.

N θ
t,n = sup{i : τ θi,n < t}

We have the following lemma

Lemma 8. For θ ∈ {(1), (2), 1C}, we have that the sequence
(
α2
nN

θ
t,n

)
n≥1

is tight

Proof. Here for θ ∈ {(1), (2)} we can follow the proof of Lemma 4.6 in Robert and

Rosenbaum (2012) together with Lemma 5. Also, by definition we have N1C
t,n ≤ N

(1)
t,n so

we also deduce the tightness of
(
α2
nN

1C
t,n

)
n≥1

.

Lemma 9. Let (Ui,n)i,n≥1 an array of positive random variables and θ ∈ {(1), (2), 1C}.
If

∀u > 0,
∑�uα−2

n �
i=1 Ui,n

P→ 0 (2.49)

then
∑Nθ

t,n

i=1 Ui,n
P→ 0. Also, if ∀u > 0,

∑�uα−2
n h(n)−1�

i=1 Ui,n
P→ 0, then

∑Nh
t,n

i=1 Ui,n
P→ 0
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Proof. Let ε > 0 and u > 0.

P

⎛⎝Nθ
t,n∑

i=1

Ui,n > ε

⎞⎠ = P

( �uα−2
n �∑

i=1

Ui,n +

Nθ
t,n∑

i=�uα−2
n �+1

Ui,n1{�uα−2
n �<Nθ

t,n}

−
�uα−2

n �∑
i=Nθ

t,n+1

Ui,n1{�uα−2
n �>Nθ

t,n} > ε

)

≤ P

⎛⎝�uα−2
n �∑

i=1

Ui,n +

Nθ
t,n∑

i=�uα−2
n �+1

Ui,n1{�uα−2
n �<Nθ

t,n} > ε

⎞⎠
≤ P

⎛⎝�uα−2
n �∑

i=1

Ui,n >
ε

2

⎞⎠+ P

⎛⎝ Nθ
t,n∑

i=�uα−2
n �+1

Ui,n1{�uα−2
n �<Nθ

t,n} >
ε

2

⎞⎠
≤ P

⎛⎝�uα−2
n �∑

i=1

Ui,n >
ε

2

⎞⎠+ P
(
�uα−2

n � < N θ
t,n

)
We take the lim sup

n→∞
and uses (2.49). We obtain :

lim sup
n→∞

P

⎛⎝Nθ
t,n∑

i=1

Ui,n > ε

⎞⎠ ≤ lim sup
n→∞

P
(
�uα−2

n � < N θ
t,n

)
We now tend u→ ∞ and conclude using Lemma 8. The second statement is proved in

the same way.

Lemma 10. For any α > 0, σ ∈ M, g ∈ G, (x, u) ∈ Sg, we have that

ψAV (σ, g, x, u) = α−4ψAV
(
σ, αg, αx, α2u

)
ψAC1 (σ, g, x, u) = α−3ψAC1

(
σ, αg, αx, α2u

)
ψAC2 (σ, g, x, u) = α−3ψAC2

(
σ, αg, αx, α2u

)
ψτ (σ, g, x, u) = α−2ψτ

(
σ, αg, αx, α2u

)
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Proof. For any Brownian motion (Wt)t≥0, by the scale property we have that (Wt)t≥0

L
=

(α−1Wα2t)t≥0. Thus, if we define τ = inf{t > 0 s.t. Wt /∈ [d(t), u(t)]} and τα = inf{t >
0 s.t. Wt /∈ [αd(t), αu(t)]}, we have that

τ
L
= inf{t > 0 s.t. Wα2t /∈ [αd(t), αu(t)]} L

= α−2τα

We deduce that :

(τ,Wτ )
L
=
(
α−2τα,Wα−2τα

) L
=
(
α−2τα, αWτα

)
(2.50)

We can prove the lemma based on the way we proved (2.50), at the cost of 2-dimension

definitions that would be more involved and straightforward applications of Strong

Markov property of Brownian motions that we won’t write, so that we don’t lose our-

selves in the technicality of this proof.

We introduce the number of points in the i-th block in the k-process as the following

N
(k)
i,n = max{j ≥ 0 s.t. τhi,n + τ

(k)
i,j,n ≤ τhi+1,n}

We also introduce the total number of points in the i-th block Ni,n = N
(1)
i,n + N

(2)
i,n .

We show now that we can control uniformly the error of the approximations of the

observation times.

Lemma 11. Let l ≥ 1, we have that

sup
i≥0 , 2≤j≤hn

E

[∣∣∣Δτ 1Ci,j,n −Δτ̃ 1Ci,j,n

∣∣∣l] = op
(
α2l
n

)
(2.51)

and

sup
i≥0 , 2≤j≤hn

E

[∣∣∣Δτ 1C,−,+
i,j,n −Δτ̃ 1C,−,+

i,j,n

∣∣∣l] = op
(
α2l
n

)
(2.52)
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Proof. We introduce the notation oUp where U stands for “uniformly in i ≥ 0”, meaning

that the sup of the rests is of the given order

First step : We define s̃hn = sup
i∈An

τ̃ 1Ci,hn,n
. We show in this step that

s̃hn
P→ 0 (2.53)

We define the accumulated time of approximated durations, i.e.

τ̃hi,n =
l=i∑
l=0

τ̃ 1Cl,hn,n

Using Lemma 7 together with Lemma 8, ∃M > 0 such that

P

(
τ̃hNh

n ,n
≤M

)
→ 1

We define Zn
0 = 0 and ∀t ∈ [τ̃hi−1,n, τ̃

h
i,n],

Zn
t = Zn

τ̃hi−1,n
+ Si−1,n

t−τ̃hi−1,n

A slight modification of the proof of Lemma 5 will conclude.

Second step : We show that we can do a localization in the number of observations

in the i-th block, i.e. there exists a non-random Mn such that

P

(
max

(
N

(1)
i,n , N

(2)
i,n

)
> Mn

)
(2.54)

converges uniformly (in i) towards 0 and Mn increasing at most linearly with hn, i.e.

we have Mn ≤ βhn where β > 0.

To prove (2.54), we need some definitions. Define for i ≥ 0 the order of observation

times Oi,k,n and the order of the approximated observation times Õi,k,n in the following

way. Let TO
i,n :=

(
τOi,j,n

)
j≥0

the sorted set of all observation times (corresponding to
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process 1 and 2) strictly greater than τhi,n. Then for j ≥ 1, we will set Oi,j,n = 1 if

the j-th observation time in TO
i,n corresponds to an observation of the first process and

Oi,j,n = 2 if it corresponds to an observation of the second process. Similarly, we set

T̃O
i,n the sorted set of all approximated times

(
τ̃
(k)
i,j,n

)
j≥0,k=1,2

. Õi,j,n are defined in the

same way. There exists a p > 0 such that for all integers i, j, n :

P

(
Oi,j+1,n = 1

∣∣∣Oi,j,n = 2
)
≥ p and P

(
Oi,j+1,n = 2

∣∣∣Oi,j,n = 1
)
≥ p (2.55)

Indeed, let l the (random) index such that τ (1)i,l,n = τOi,j,n. Conditioned on
{
Oi,j,n = 1

}
,

we know that Oi,j+1,n = 2 if ΔX
(4)

[τhi,n+τ li,j,n,.]
crosses g+ or −g+ before ΔX

(3)

[τhi,n+τOi,j,n,.]

crosses g− or −g−. Using (2.3) of (A2) and (2.43), we can easily bound away from

0 this probability, thus we deduce (2.55). Now, using (2.15) together with (2.55) and

strong Markov property of Brownian motions, we deduce (2.54).

Third step : let g = (d, u) such that (g, g) ∈ G, σ ∈ [σ−, σ+] and ε ≤ g−
2

. We define

τ (g, σ, ε) = inf{t > 0 : σWt = u(t) + ε or σWt = d(t) − ε}, where Wt is a standard

Brownian motion. We show that

E

[∣∣∣τ (g, σ, ε)− τ (g, σ, 0)
∣∣∣l] ≤ γ(l) (ε) (2.56)

where γ(l) (ε) ε→0→ 0.

In order to show (2.56), let

τ 1 (g, σ, ε) = inf{t > 0 : σWt+τ(g,σ,0) = min
(
u(τ(g, σ, 0)) +Kt+ ε, g+

)
or σWt+τ(g,σ,0) = max

(
d(τ(g, σ, 0))−Kt− ε, g−

)}.
By (2.4) and (2.6) of (A3), we have τ (g, σ, ε) − τ (g, σ, 0) ≤ τ 1 (g, σ, ε). Conditioned

on
{
τ (g, σ, ε)

}
and using strong Markov property of Brownian motions, we can show

that Eτ(g,σ,ε)

[∣∣∣τ 1 (g, σ, ε) ∣∣∣l] ε→0→ 0 using Theorem 2 in Potzelberger and Wang (2001)
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for instance.

Fourth step : let k ∈ {1, 2}. We show here

∑
j≤Mn

E

[∣∣∣τ (k)i,j,n − τ̃
(k)
i,j,n

∣∣∣l] = oUp
(
α2l
n

)
(2.57)

The idea is to show that by recurrence in j, E
[∣∣∣τ (k)i,j,n − τ̃

(k)
i,j,n

∣∣∣l] can be arbitrarily small

when n grows. It is then a straightforward analysis exercise to use the localization

in second step and choose a different sequence h if necessary, that will still be non-

random increasing and following (2.45) and (2.46), so that the sum in (2.57) will be

also arbitrarily small. Let’s start with j = 1 and k = 1.

E

[∣∣∣τ (k)i,1,n − τ̃
(k)
i,1,n

∣∣∣l] = E

[∣∣∣τ (k)i,1,n − τ̃
(k)
i,1,n

∣∣∣l1Ei,n

]
+ E

[∣∣∣τ (k)i,1,n − τ̃
(k)
i,1,n

∣∣∣l1EC
i,n

]

where Ei,n = E
(1)
i,n ∩ E(2)

i,n with

E
(1)
i,n =

{
sup

s∈[τhi,n,τhi,n+τ
(1)
i,1,n∨τ̃ (1)i,1,n]

∣∣ΔX(1)

[τhi,n,s]
−ΔX̃

(1)

[τhi,n,s]

∣∣ < η1,n

}
,

E
(2)
i,n =

{
sup

s∈[τhi,n,τhi,n+τ
(1)
i,1,n∨τ̃ (1)i,1,n]

∥∥g(1)s − g
(1)

τhi,n

∥∥
∞ < η1,n

}
,

η1,n = qnαn, qn = max
(
α
d−1/2
n , z

1/2
n

)
and zn = sup

1≤u,v≤4

(
E

[(
S
(
σu,v, shn ∨ s̃hn

))2])1/2

. By

(2.50) and (2.56),

E

[∣∣∣τ (k)i,1,n − τ̃
(k)
i,1,n

∣∣∣l1Ei,n

]
≤ Cα2l

n

(
γ(l) (2qn) + γ(l) (−2qn)

)

48



www.manaraa.com

Using Cauchy-Schwarz inequality and Lemma 7,

E

[∣∣∣τ (k)i,1,n − τ̃
(k)
i,1,n

∣∣∣l1EC
i,n

]
≤ Cα2l

n P
(
EC

i,n

)1/2 ≤ Cα2l
n

(
P

((
E

(1)
i,n

)C
)
+ P

((
E

(2)
i,n

)C
))1/2

On the one hand,

P

((
E

(1)
i,n

)C
)

≤ (η1,n)
−1

E

⎡⎣ sup
s∈[τhi,n,τhi,n+τ

(1)
i,1,n∨τ̃ (1)i,1,n]

∣∣ΔX(1)

[τhi,n,s]
−ΔX̃

(1)

[τhi,n,s]

∣∣⎤⎦
≤ C (η1,n)

−1 max
1≤u,v≤4

E

⎡⎣(∫ τhi,n+τ
(1)
i,1,n∨τ̃ (1)i,1,n

τhi,n

(
σu,v
s − σu,v

τhi,n

)2

ds

)1/2
⎤⎦

≤ C (η1,n)
−1 max

1≤u,v≤4
E

[((
τ
(1)
i,1,n ∨ τ̃ (1)i,1,n

)
S
(
σu,v, shn ∨ s̃hn

)2)1/2
]

≤ C (η1,n)
−1

(
E

[
τ
(1)
i,1,n ∨ τ̃ (1)i,1,n

])1/2

zn

≤ Cz1/2n

where we used Markov inequality in the first inequality, conditional Burkholder-Davis-

Gundy inequality in the second inequality, Cauchy-Schwarz inequality in the fourth

inequality, Lemma 7 in the last inequality. On the other hand,

P

((
E

(2)
i,n

)C
)

≤ (η1,n)
−1

E

⎡⎣ sup
s∈[τhi,n,τhi,n+τ

(1)
i,1,n∨τ̃ (1)i,1,n]

∥∥g(1)s − g
(1)

τhi,n

∥∥
∞

⎤⎦
≤ C (η1,n)

−1
E

[(
τ
(1)
i,1,n ∨ τ̃ (1)i,1,n

)d
]

≤ Cαd−1/2
n

where we used Markov inequality in the first inequality, (2.7) of (A3) in the second

inequality, Lemma 7 in the last inequality. In summary, we have

E

[∣∣∣τ (k)i,j,n − τ̃
(k)
i,j,n

∣∣∣l] ≤ Cα2l
n

(
γ(l) (2qn) + γ(l) (−2qn) + z1/2n + αd−1/2

)
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which we can make arbitrarily small, because zn → 0 by first step together with Lemma

6 and the continuity of σ (A1). The case with k = 2 is very similar. Finally, for j > 1,

the same kind of computation techniques, using in addition (2.6) of (A3), will work.

Fifth step : Prove that uniformly (in i)

P

(
∀j ≤Mn, Oi,j,n = Õi,j,n

)
→ 1 (2.58)

To show (2.58), let j ≤ Mn. We define the (random) index v such that τOi,v,n = τ
(k)
i,j,n.

Modifying suitably h if needed, there exists (using fourth step) a sequence (εn) such

that

P

(∣∣∣τ (k)i,j,n − τ̃
(k)
i,j,n

∣∣∣ ≤ α2
nεn

)
→ 1 (2.59)

P

(∣∣∣τOi,v+1,n − τOi,v,n

∣∣∣ ≤ α2
nεn

)
→ 0 (2.60)

Using (2.59) and (2.60), we can verify (2.58) by recurrence.

Sixth step : We prove here (2.51) and (2.52). Using Lemma 7 and (2.58)

E

[∣∣∣Δτ 1Ci,j,n −Δτ̃ 1Ci,j,n

∣∣∣l] = E

[∣∣∣Δτ 1Ci,j,n −Δτ̃ 1Ci,j,n

∣∣∣l1{∀j≤Mn,Oi,j,n=Õi,j,n}

]
+ oUp

(
α2l
n

)
The first term on the right part of the inequality can be bounded by

C

(
E

[∣∣∣τ 1Ci,j,n − τ̃ 1Ci,j,n

∣∣∣l1{∀j≤Mn,Oi,j,n=Õi,j,n}

]
+ E

[∣∣∣τ 1Ci,j−1,n − τ̃ 1Ci,j−1,n

∣∣∣l1{∀j≤Mn,Oi,j,n=Õi,j,n}

])
Both terms can be treated with the same trick. Using the second step and Lemma 7,

the first term is equal to

∑
v≤Mn

E

[∣∣∣τ 1Ci,j,n − τ̃ 1Ci,j,n

∣∣∣l1{∀j≤Mn,Oi,j,n=Õi,j,n}1{τ1Ci,j,n=τ
(1)
i,v,n}

]
+ oUp

(
α2l
n

)
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The sum is obviously bounded by

∑
v≤Mn

E

[∣∣∣τ 1Ci,j,n − τ̃ 1Ci,j,n

∣∣∣l]

and using (2.57), we prove (2.51). We can deduce (2.52) with the same kind of compu-

tations.

Let Mn the interpolated normalized error, i.e.

Mn
t = α−1

n

(∑
i≥1

ΔX
(1)

[τ1Ci−1,n∧t,τ1Ci,n∧t]ΔX
(2)

[τ1C,−
i−1,n∧t,τ1C,+

i,n ∧t] −
∫ t

0

σ(1)
s σ(2)

s ρ1,2s ds

)

Mn
t corresponds exactly to the normalized error of the Hayashi-Yoshida estimator if we

observe the price of both assets at time t. We remind to the reader the definition of

Ni,n in (2.20)

Ni,n = ΔX
(1)

τ1Ci,n
ΔX

(2)

τ1C,−,+
i,n

−
∫ τ1Ci,n

τ1Ci−1,n

σ(1)
s σ(2)

s ρ1,2s ds

Lemma 12. ∑
i∈An

Eτhi−1,n

[(
ΔMn

τhi,n

)2
]

= α−2
n

∑
i∈An

Eτhi−1,n

[
hn∑
u=2

(
N(i−1)hn+u

)2
+ 2N(i−1)hn+uN(i−1)hn+u+1

]
+ op(1)

Proof. We obtain this equality noting that (Ni,n)n≥0 are centered and 1-correlated, and

that the terms left converge to 0 in probability.

We introduce the observation time at the start of a block, where “s” stands for “start”

τ si,n = sup{τhj,n s.t. τhj,n < τ 1Ci,n }
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Lemma 13.

α−2
n

∑
i∈An

Eτhi−1,n

[
hn∑
u=2

(
N(i−1)hn+u

)2
+ 2N(i−1)hn+uN(i−1)hn+u+1

]

= α2
n

∑
i∈An

hn−2∑
j=0

∫
R2

ψAV
(
στhi−1,n

, gτhi−1,n
, α−1

n x, α−2
n v

)
dπ̃i−1,j,n (x, v) + op(1)

Proof. First step : approximating with holding volatility constant. Set

Ñi,n =
(
στsi−1,n

ΔWτ1Ci,n

)(1) (
στsi−1,n

ΔWτ1C,−,+
i,n

)(2)

−
∫ τ1Ci,n

τ1Ci−1,n

ζ1,2τsi−1,n
ds

where A(i) is the i-th component of the vector A. we want to show that :

α−2
n

∑
i∈An

Eτhi−1,n

[
hn∑
u=2

(
N(i−1)hn+u

)2
+ 2N(i−1)hn+uN(i−1)hn+u+1

]

= α−2
n

∑
i∈An

Eτhi−1,n

[
hn∑
u=2

(
Ñ(i−1)hn+u

)2

+ 2Ñ(i−1)hn+uÑ(i−1)hn+u+1

]
+ op (1)

Noting Fi,n = (Ni,n)
2 + 2Ni,nNi+1,n and F̃i,n =

(
Ñi,n

)2

+ 2Ñi,nÑi+1,n, it is sufficient

to show that

α−2
n

∑
i≥1

Eτsi−1,n

[∣∣∣∣Fi,n − F̃i,n

∣∣∣∣1{τsi−1,n<t}

]
P→ 0

that we can rewrite as α−2
n

∑N
(1)
t,n

i≥1 Eτsi−1,n

[∣∣∣Fi,n − F̃i,n

∣∣∣1{τsi−1,n<t}
]

P→ 0. Using Lemma 9,

it is sufficient to show that ∀u > 0 :

α−2
n

uα−2
n∑

i=1

Eτsi−1,n

[∣∣∣Fi,n − F̃i,n

∣∣∣1{τsi−1,n<t}
]

P→ 0
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Thus, it is sufficient to show the convergence L1 of this quantity, i.e. that

α−2
n

uα−2
n∑

i=1

E

[∣∣∣Fi,n − F̃i,n

∣∣∣1{τsi−1,n<t}
]
→ 0

We have that ∣∣∣∣Fi,n − F̃i,n

∣∣∣∣ ≤ B
(1)
i,n + 2B

(2)
i,n

where B(1)
i,n =

∣∣∣∣N2
i,n − Ñ2

i,n

∣∣∣∣ and B(2)
i,n =

∣∣∣∣Ni−1,nNi,n − Ñi−1,nÑi,n

∣∣∣∣. We have that

B
(1)
i,n ≤ C

(1)
i,n + C

(2)
i,n + C

(3)
i,n

where

C
(1)
i,n =

∣∣∣∣ (ΔX(1)

τ1Ci,n
ΔX

(2)

τ1C,−,+
i,n

)2

−
((

στsi−1,n
ΔWτ1Ci,n

)(1) (
στsi−1,n

ΔWτ1C,−,+
i,n

)(2)
)2 ∣∣∣∣

C
(2)
i,n =

∣∣∣∣
(∫ τ1Ci,n

τ1Ci−1,n

ζ1,2s ds

)2

−
(∫ τ1Ci,n

τ1Ci−1,n

ζ1,2τsi−1,n
ds

)2 ∣∣∣∣

C
(3)
i,n = 2

∣∣∣∣ΔX(1)

τ1Ci,n
ΔX

(2)

τ1C,−,+
i,n

∫ τ1Ci,n

τ1Ci−1,n

ζ1,2s ds

−
(
στsi−1,n

ΔWτ1Ci,n

)(1) (
στsi−1,n

ΔWτ1C,−,+
i,n

)(2)
∫ τ1Ci,n

τ1Ci−1,n

ζ1,2τsi−1,n
ds

∣∣∣∣
Let’s show that α−2

n

∑uα−2
n

i=1 E

[
C

(1)
i,n1{τsi−1,n<t}

]
→ 0. We can write it as C(1)

i,n ≤ D
(1)
i,n+D

(2)
i,n ,
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where

D
(1)
i,n =

∣∣∣∣ (ΔX(1)

τ1Ci,n
ΔX

(2)

τ1C,−,+
i,n

)2((
στsi−1,n

ΔWτ1Ci,n

)(1)

ΔX
(2)

τ1C,−,+
i,n

)2 ∣∣∣∣
D

(2)
i,n =

∣∣∣∣ ((στsi−1,n
ΔWτ1Ci,n

)(1)

ΔX
(2)

τ1C,−,+
i,n

)2

−

−
((

στsi−1,n
ΔWτ1Ci,n

)(1) (
στsi−1,n

ΔWτ1C,−,+
i,n

)(2)
)2 ∣∣∣∣

We want to show that α−2
n

∑uα−2
n

i=1 E

[
D

(1)
i,n1{τsi−1,n<t}

]
→ 0. We define :

E
(1)
i,n = ΔX

(1)

τ1Ci,n
ΔX

(2)

τ1C,−,+
i,n

E
(2)
i,n =

(
στsi−1,n

ΔWτ1Ci,n

)(1)

ΔX
(2)

τ1C,−,+
i,n

Using Cauchy-Schwarz inequality, we deduce :

E

[
D

(1)
i,n1{τsi−1,n<t}

]
= E

[(
E

(1)
i,n + E

(2)
i,n

)(
E

(1)
i,n − E

(2)
i,n

)
1{τsi−1,n<t}

]
≤

(
E

[(
E

(1)
i,n + E

(2)
i,n

)2
]
E

[(
E

(1)
i,n − E

(2)
i,n

)2

1{τsi−1,n<t}

])1/2

Using Cauchy-Schwarz inequality together with Burkholder-Davis-Gundy inequality

and Lemma 7, we obtain that :

E

[(
E

(1)
i,n + E

(2)
i,n

)2
]
= OU

(
α4
n

)
where U stands for “uniformly in 1 ≤ i ≤ uα−2

n ”. Another application of Cauchy-

Schwarz inequality gives us

E

[(
E

(1)
i,n − E

(2)
i,n

)2

1{τsi−1,n<t}

]
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≤
(
E

[(
ΔX

(1)

τ1Ci,n
−
(
στsi−1,n

ΔWτ1Ci,n

)(1)
)4

1{τsi−1,n<t}

]
E

[(
ΔX

(2)

τ1C,−,+
i,n

)4
])1/2

Using once again Cauchy-Schwarz inequality together with Burholder-Davis-Gundy in-

equality and Lemma 7, we obtain that :

E

[(
ΔX

(2)

τ1C,−,+
i,n

)4
]
= OU

(
α4
n

)
Similarly, we compute using conditional Burkholder-Davis-Gundy in first inequality,

Cauchy-Schwarz in third inequality, Lemma 5, Lemma 6 and Lemma 7 together with

the continuity of σ (A1) in last equality.

E

[(
ΔX

(1)

τ1Ci,n
−
(
στsi−1,n

ΔWτ1Ci,n

)(1)
)4

1{τsi−1,n<t}

]

= E

[
1{τsi−1,n<t}Eτ1Ci−1,n

[(
ΔX

(1)

τ1Ci,n
−
(
στsi−1,n

ΔWτ1Ci,n

)(1)
)4

]]

= E

⎡⎣1{τsi−1,n<t}Eτ1Ci−1,n

⎡⎣(∫ τ1Ci,n

τ1Ci−1,n

((
σs − στsi−1,n

)
dWs

)(1)
)4

⎤⎦⎤⎦
≤ C sup

1≤j,l≤4
E

⎡⎣1{τsi−1,n<t}Eτ1Ci−1,n

⎡⎣(∫ τ1Ci,n

τ1Ci−1,n

(
σj,l
s − σj,l

τsi−1,n

)2

ds

)2
⎤⎦⎤⎦

= C sup
1≤j,l≤4

E

⎡⎣1{τsi−1,n<t}

(∫ τ1Ci,n

τ1Ci−1,n

(
σj,l
s − σj,l

τsi−1,n

)2

ds

)2
⎤⎦
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≤ C sup
1≤j,l≤4

E

[(
Δτ 1Ci,n S

(
σj,l, shn

)2)2
]
+ oU

(
α4
n

)
≤ C

(
E

[(
Δτ 1Ci,n

)4]
E

[
sup

1≤j,l≤4

(
S
(
σj,l, shn

))8])1/2

+ oU
(
α4
n

)
= OU

(
α4
n

)
With the same kind of computations, we show that α−2

n

∑uα−2
n

i=1 E

[
D

(2)
i,n1{τsi−1,n<t}

]
→ 0,

and we also can show α−2
n

∑uα−2
n

i=1 E

[
C

(2)
i,n1{τsi−1,n<t}

]
→ 0, α−2

n

∑uα−2
n

i=1 E

[
C

(3)
i,n1{τsi−1,n<t}

]
→

0 (thus we have also that α−2
n

∑uα−2
n

i=1 E

[
B

(1)
i,n1{τsi−1,n<t}

]
→ 0) and

α−2
n

uα−2
n∑

i=1

E

[
B

(2)
i,n1{τsi−1,n<t}

]
→ 0.

Second step : approximating using (τ̃i,j,n)i,j,n≥0 instead of (τi,n)i,n≥0. We set

˜̃Ni,j,n =
(
στhi,nΔWτ̃1Ci,j,n

)(1) (
στhi,nΔWτ̃1C,−,+

i,j,n

)(2)

−
∫ τ̃1Ci,j,n

τ̃1Ci,j−1,n

ζ1,2
τhi,n
ds

we want to show that :

α−2
n

∑
i∈An

Eτhi−1,n

[
hn∑
u=2

(
Ñ(i−1)hn+u

)2

+ 2Ñ(i−1)hn+uÑ(i−1)hn+u+1

]

= α−2
n

∑
i∈An

Eτhi−1,n

[
hn∑
u=2

(
˜̃Ni−1,u,n

)2

+ 2 ˜̃Ni−1,u,n
˜̃Ni,u+1,n

]
+ op (1)

Using the same kind of computations as in the first step together with Lemma 11, we

conclude.

Third step : express the result as a function of ψAV . Using Lemma 10 in last
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equality, we deduce for any integer u such that 2 ≤ u ≤ hn :

Eτhi−1,n

[(
˜̃Ni−1,u,n

)2

+ 2 ˜̃Ni−1,u,n
˜̃Ni−1,u+1,n

]
=

∫
R2

ψAV
(
στhi−1,n

, αngτhi−1,n
, x, v

)
dπ̃i,u−2,n (x, v)

= α4
n

∫
R2

ψAV
(
στhi−1,n

, gτhi−1,n
, α−1

n x, α−2
n v

)
dπ̃i,u−2,n (x, v)

Lemma 14. ∀σ ∈ M, g ∈ G, ∃π (σ, g) distribution such that :

α2
n

∑
i∈An

hn−2∑
j=0

∫
R2

ψAV
(
στhi−1,n

, gτhi−1,n
, α−1

n x, α−2
n u

)
dπ̃i−1,j,n (x, u)

= α2
n

∑
i∈An

hnφ
AV

(
στhi−1,n

, gτhi−1,n

)
+ op(1)

Proof. We define the transition functions of the Markov chains
(
Z̃i (σ, g)

)
i≥0

defined

in (2.25). For (x, u) ∈ Sg, B ∈ B (Sg) (borelians of Sg)

P (σ, g) ((x, u) , B) = P

(
Z̃1 (σ, g) ∈ B

∣∣∣∣Z̃0 (σ, g) = (x, u)

)
First step : We prove that ∀σ ∈ M, ∀g ∈ G, the state space Sg is ν-small, i.e.

there exists a non-trivial measure ν on B(R2) such that ∀(x, u) ∈ Sg, ∀B ∈ B(Sg),

P (σ, g) ((x, u), B) ≥ ν (B). Let B = [xa, xb] × [ua, ub]. We are choosing ν such that

ν = 0 outside [−g−
4
, g

−
4
]× [3, 4]. Thus, without loss of generality, we have that [xa, xb]×

[ua, ub] ⊂ [−g−
4
, g

−
4
]× [3, 4]. We want to show that ∃c > 0 such that uniformly

P (σ, g) ((x, u) , B) ≥ c (xb − xa) (ub − ua)
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There are two useful ways to rewrite (X̃(3), X̃(4)). The first one is :

X̃
(3)
t := σ(3)B̃

(3)
t (2.61)

X̃
(4)
t := ρ3,4σ(4)B̃

(3)
t +

(
1− (

ρ3,4
)2)1/2

σ(4)B̃3,⊥
t (2.62)

where B̃(3) and B̃3,⊥ are independent, ρ3,4 ∈ [ρ3,4− , ρ3,4+ ] and max
(−ρ3,4− , ρ3,4+

)
< 1 (be-

cause σ ∈ M),

δ =
(
1−max

((
ρ3,4−

)2
,
(
ρ3,4+

)2))1/2

(2.63)

The other way to rewrite it is :

X̃
(4)
t := σ(4)B̃

(4)
t (2.64)

X̃
(3)
t := ρ3,4σ(3)B̃

(4)
t +

(
1− (

ρ3,4
)2)1/2

σ(3)B̃4,⊥
t (2.65)

where B̃(4) and B̃4,⊥ are independent. For (Bt)t≥0 a standard Brownian motion,

a < x < b, we denote the exiting-zone time of the Brownian motion

τa,bx = inf{t > 0 s.t. x+Bt = a or x+Bt = b}

and p1(x, a, b, t) the density of τa,bx . We also define p2(x, a, b, s, y) the distribution of

Bs + x conditioned on {τa,bx ≥ s}. Finally, let p3(x, a, b, t) the distribution of τa,bx

conditioned on {Bτa,bx
= b}. All the formulas can be found in Borodin and Salminen

(2002). Consider the spaces C1 = C3 = {(x, a, b, t) ∈ R4 s.t. a ≤ x ≤ b, t > 0},
C2 = {(x, a, b, t, y) ∈ R5 s.t. a ≤ x ≤ b , a < y < b , t > 0}. The functions pi are

continuous on Ci and positive. Thus, for all compact set Ki ⊂ Ci, we have

inf
k∈Ki

pi(k) > 0 (2.66)
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We can bound below

P (σ, g) ((x, u) , B) ≥ P

(
E0

⋂
E1

⋂
E2

⋂
E3

⋂
E4

∣∣∣∣Z̃0 = (x, u)

)
where

E0 =
{

sup
0≤s≤τ̃

(2)
1

∣∣∣X̃(3)
s

∣∣∣ < εσ− min(σ−, 1)
15σ+

, τ̃ (2)1 ≤ K
}

E1 =
{

sup
τ̃
(2)
1 ≤s≤K+1

∣∣∣X̃(3)
s

∣∣∣ < εσ−

10σ+
, sup
τ̃
(2)
1 ≤s≤K+1

∣∣∣ΔB̃3,⊥
[τ̃

(2)
1 ,s]

∣∣∣ < g−σ−

4 (σ+)2

}
E2 =

{
sup

K+1≤s≤τ̃
(2)
2

∣∣∣X̃(3)
s

∣∣∣ ≤ ε

5
, τ̃ (2)2 ∈ [K + 2, K + 3]

}
E3 =

{
∀s ∈ [τ̃

(2)
2 , K + 4] X̃(3)

s ∈ [d1(K), u1(K)] , X̃(3)
K+4 ∈ [u1(K)− 2ε, u1(K)− ε]

}
⋂{

sup
τ̃
(2)
2 ≤s≤K+4

∣∣∣ΔX̃(4)

[τ̃
(2)
2 ,s]

∣∣∣ < g−

12

}
E4 =

{
τ̃
(1)
1 ∈ [ua + τ̃

(2)
2 , ub + τ̃

(2)
2 ] , inf

K+4≤s≤τ̃
(1)
1

ΔX̃
(3)
[K+4,s] > −2ε

}
⋂{

sup
K+4≤s≤τ̃

(1)
1

∣∣∣ΔX̃(4)

[τ̃
(2)
2 ,s]

∣∣∣ < g− , ΔX̃(4)

[τ̃
(2)
2 ,τ̃

(1)
1 ]

∈ [xa, xb]
}

where ε = g−σ−
24σ+ . Using extensively Bayes formula, we can rewrite

P

(
E0

⋂
E1

⋂
E2

⋂
E3

⋂
E4

⋂
{Z̃1 ∈ B}

∣∣∣∣Z̃0 = (x, u)

)
= I × II × III × IV × V

where I = P

(
E0

∣∣∣∣{Z̃0 = (x, u)}
)

, II = P

(
E1

∣∣∣∣E0

⋂{Z̃0 = (x, u)}
)

, and also III =

P

(
E2

∣∣∣∣E1

⋂
E0

⋂{Z̃0 = (x, u)}
)

, IV = P

(
E3

∣∣∣∣E2

⋂
E1

⋂
E0

⋂{Z̃0 = (x, u)}
)

and V =

P

(
E4

∣∣∣∣E3

⋂
E2

⋂
E1

⋂
E0

⋂{Z̃0 = (x, u)}
)

.

We prove that I is uniformly bounded away from 0. Using (2.44), (2.61), (2.62) and
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(2.63), we deduce that E(1)
0

⋂
E

(2)
0 ⊂ E0 where

E
(1)
0 =

{
sup

0≤s≤K

∣∣∣B̃(3)
s

∣∣∣ < εσ− min(σ−, 1)

15 (σ+)2

}
E

(2)
0 =

{
sup

0≤s≤K

∣∣∣ x

σ(4)
(
1− (ρ3,4)2

)1/2 + B̃3,⊥
s

∣∣∣ ≥ g+

δσ− +
εσ− min(σ−, 1)

15 (σ+)2

}

Conditionally on {Z̃0 = (x, u)}, E(1)
0 and E(2)

0 are independent. Thus, we deduce

I ≥ P

(
E

(1)
0

∣∣∣∣{Z̃0 = (x, u)}
)
P

(
E

(2)
0

∣∣∣∣{Z̃0 = (x, u)}
)

Using Markov property of Brownian motions, we obtain that the right part of the

inequality is equal to(
1−

∫ K

0

p1

(
0,−εσ

− min(σ−, 1)

15 (σ+)2
,
εσ− min(σ−, 1)

15 (σ+)2
, t

)
dt

)∫ K

0

p1

(
y
(1)
0 ,−y(2)0 , y

(2)
0 , t

)
dt

where y(1)0 = x

σ(4)(1−(ρ3,4)2)
1/2 , y

(2)
0 = g+

δσ− + εσ− min(σ−,1)

15(σ+)2
, which is uniformly (in x, σ and

g) bounded away from 0 using (2.44) and (2.66).

We prove that II is uniformly bounded away from 0. Conditionally on E0

⋂{Z̃0 =

(x, u)}, the two quantities of E1 are independent. Thus, we bound below II (the same

way we did for I) by :(
1−

∫ K+1

τ̃
(2)
1

p1

(
B̃

(3)

τ̃
(2)
1

,− εσ−

10σ+σ(3)
,

εσ−

10σ+σ(3)
, t

)
dt

)
(
1−

∫ K+1

τ̃
(2)
1

p1

(
0,− g−σ−

4σ+σ(4)
,
g−σ−

4σ+σ(4)
, t

)
dt

)
which is uniformly bounded away from 0 using (2.44) together with (2.66).

We prove that III is uniformly bounded away from 0. Using (2.44), (2.61), (2.62)
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and (2.63), we deduce that E(1)
2

⋂
E

(2)
2 ⊂ E2 where

E
(1)
2 =

{
sup

K+1≤s≤K+3

∣∣∣B̃(3)
s

∣∣∣ ≤ ε

5σ+

}
E

(2)
2 =

{
sup

K+1≤s≤K+2

∣∣∣ΔB̃3,⊥
[τ̃

(2)
1 ,s]

∣∣∣ < g−

2σ+
, sup
K+2≤s≤K+3

∣∣∣ΔB̃3,⊥
[τ̃

(2)
1 ,s]

∣∣∣ ≥ g+

δσ− +
ε

5σ+δ

}
Conditionally on E1

⋂
E0

⋂{Z̃0 = (x, u)}, E(1)
2 and E

(2)
2 are independent. Thus, we

deduce

III ≥ P

(
E

(1)
2

∣∣∣∣E1

⋂
E0

⋂
{Z̃0 = (x, u)}

)
P

(
E

(2)
2

∣∣∣∣E1

⋂
E0

⋂
{Z̃0 = (x, u)}

)
Using Markov property of Brownian motions, we obtain that the right part of the

inequality conditioned on {B̃(3)
K+1 , ΔB̃3,⊥

[τ̃
(2)
1 ,K+1]

∣∣∣E1

⋂
E0

⋂{Z̃0 = (x, u)}} is equal to

(
1−

∫ 2

0

p1

(
B̃

(3)
K+1,−

ε

5σ+
,
ε

5σ+
, t
)
dt

)(
1−

∫ 1

0

p1

(
ΔB̃3,⊥

[τ̃
(2)
1 ,K+1]

,− g+

2σ+
,
g+

2σ+
, t

)
dt

)

×
∫ g−

2σ+

− g−
2σ+

∫ 2

1

p1

(
y,−

(
g+

δσ− +
ε

5σ+δ

)
,
g+

δσ− +
ε

5σ+δ
, t

)
dtdq(y)

where q is the (conditional) distribution of ΔB̃3,⊥
[τ̃

(2)
1 ,K+1]

+B1 conditioned on

{
τ
− g−

2σ+ , g−
2σ+

ΔB̃3,⊥
[τ̃

(2)
1 ,K+1]

≥ 1

}
.

Using the definition of E1 together with (2.44) and (2.66), we have III which is uni-

formly bounded away from 0.

We prove that IV is uniformly bounded away from 0. Using (2.64) and (2.65), we
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deduce that E(1)
3

⋂
E

(2)
3 ⊂ E3 where

E
(1)
3 =

{
sup

τ̃
(2)
2 ≤s≤K+4

∣∣∣ΔB̃(4)

[τ̃
(2)
2 ,s]

∣∣∣ < εσ−

5σ+σ(4)

}
E

(2)
3 =

{
∀s ∈ [τ̃

(2)
2 , K + 4] ΔB̃4,⊥

[τ̃
(2)
2 ,s]

∈ [y
(1)
3 , y

(2)
3 ] , ΔB̃4,⊥

[τ̃
(2)
2 ,K+4]

∈ [y
(3)
3 , y

(4)
3 ]

}
with y

(1)
3 = d1(K)+2ε/5

σ(4)(1−(ρ3,4)2)
1/2 , y

(2)
3 = u1(K)−2ε/5

σ(4)(1−(ρ3,4)2)
1/2 , y

(3)
3 = u1(K)−8ε/5

σ(4)(1−(ρ3,4)2)
1/2 , as well as

y
(4)
3 = u1(K)−7ε/5

σ(4)(1−(ρ3,4)2)
1/2 . Conditionally on E2

⋂
E1

⋂
E0

⋂{Z̃0 = (x, u)}, E(1)
3 and E

(2)
3

are independent. Thus, we deduce

IV ≥ P

(
E

(1)
3

∣∣∣∣E2

⋂
E1

⋂
E0

⋂
{Z̃0 = (x, u)}

)

P

(
E

(2)
3

∣∣∣∣E2

⋂
E1

⋂
E0

⋂
{Z̃0 = (x, u)}

)
Using Markov property of Brownian motions, we obtain that the right part of the

inequality conditioned on {τ̃ (2)2

∣∣∣∣E2

⋂
E1

⋂
E0

⋂{Z̃0 = (x, u)}} is equal to

(
1−

∫ K+4−τ̃
(2)
2

0

p1

(
0,− εσ−

5σ+σ(4)
,

εσ−

5σ+σ(4)
, t

)
dt

)(
1−

∫ K+4−τ̃
(2)
2

0

p1

(
0, y

(1)
3 , y

(2)
3 , t

)
dt

)

×
∫ y

(4)
3

y
(3)
3

p2

(
0, y

(1)
3 , y

(2)
3 , K + 4− τ̃

(2)
2 , y

)
dy

which is uniformly bounded away from 0 using (2.44), (2.63) and (2.66).

We prove that V > c(xb − xa)(ub − ua). Using (2.61) and (2.62), we deduce that

E
(1)
4

⋂
E

(2)
4 ⊂ E4 where

E
(1)
4 =

{
τ̃ ∈ [ua + τ̃

(2)
2 , ub + τ̃

(2)
2 ] , X̃(3)

τ̃ = u1(K)
}

E
(2)
4 =

{
sup

K+4≤s≤τ̃

∣∣∣ΔB̃3,⊥
[K+4,s]

∣∣∣ < 5g−

6σ(4)
(
1− (ρ3,4)2

)1/2 , ΔB̃3,⊥
[L+4,τ̃ ] ∈ [y

(1)
4 , y

(2)
4 ]

}
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τ̃ = inf{t > K + 4 : X̃(3)
t = u1(K) or ΔX̃

(3)
[K+4,t] = −2ε},

y
(1)
4 =

xa −ΔX̃
(4)

[τ̃
(2)
2 ,K+4]

− ρ3,4σ(4)
(
σ(3)

)−1
(
u1(K)− X̃

(3)
K+4

)
σ(4)

(
1− (ρ3,4)2

)1/2 ,

and y(2)4 =
xb−ΔX̃

(4)

[τ̃
(2)
2 ,K+4]

−ρ3,4σ(4)(σ(3))
−1

(
u1(K)−X̃

(3)
K+4

)

σ(4)(1−(ρ3,4)2)
1/2 . We have

V = P

(
X̃

(3)
τ̃ = u1(K)

)
P

(
E

(1)
4

⋂
E

(2)
4

∣∣∣∣E3

⋂
E2

⋂
E1

⋂
E0

⋂
{Z̃0 = (x, u)}

⋂
{X̃(3)

τ̃ = u1(K)}
)

The first term on the right part of the equation is uniformly bounded away from 0

(Borodin and Salminen (2002)). Because τ̃ is a function of X̃(3) and B̃3,⊥ is independent

with X̃(3), τ̃ and B̃3,⊥ are independent. Thus the second term on the right conditioned

on

{y(1)4 , y
(2)
4 , X

(3)
K+4, τ̃

(2)
2

∣∣∣E3

⋂
E2

⋂
E1

⋂
E0

⋂
{Z̃0 = (x, u)}}

can be expressed as :

∫ ub+τ̃
(2)
2 −(K+4)

ua+τ̃
(2)
2 −(K+4)

∫ y
(2)
4

y
(1)
4

p3

(
X

(3)
K+4

σ(3)
,
X

(3)
K+4 − 2ε

σ(3)
,
u1(K)

σ(3)
, t

)
p2

(
0,−5g−

y
(3)
4

,
5g−

y
(3)
4

, t, y

)
dtdy

where y
(3)
4 = 6σ(4)

(
1− (ρ3,4)

2
)1/2

. We have that y
(1)
4 and y

(2)
4 are dominated by

3g−

4σ(4)(1−(ρ3,4)2)
1/2 . Using this together with (2.44), (2.63) and (2.66), we deduce that

V ≥ c(xb − xa)(ub − ua).

Second step : We prove that
∥∥∥ψAV

∥∥∥
∞

:= sup
σ∈M,g∈G,(x,u)∈Sg

∣∣∣ψAV (σ, g, x, u)
∣∣∣ < ∞. To
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show this :

E

[(
ΔX̃

(1)

τ̃1C2
ΔX̃

(2)

τ̃1C,−,+
2

− ζ̃1,2Δτ̃ 1C2

)2
]
≤ 2E

[(
ΔX̃

(1)

τ̃1C2
ΔX̃

(2)

τ̃1C,−,+
2

)2

+
(
ζ̃1,2Δτ̃ 1C2

)2
]

The second term in the right part of the inequality is uniformly bounded using (2.44) and

Lemma 7. Using successively Cauchy-Schwarz and Burholder-Davis-Gundy inequality,

(2.44) and Lemma 7, we can also bound uniformly the first term. The other term of

(2.21) can be bounded in the same way.

Third step : Define q = (σ, g, x, u) and

Q = {(σ, g, x, u) s.t. σ ∈ M, g ∈ G, (x, u) ∈ Sg} .

Prove that ∀q ∈ Q, there exists a measure π̃ (σ, g) such that

sup
q∈Q

∣∣∣∣ n−1∑
l=0

∫
R2

ψAV (σ, g, y, v) dπ̃l (σ, g, x, u) (y, v)− n

∫
R2

ψAV (σ, g, y, v) dπ̃ (σ, g) (y, v)

∣∣∣∣
= nop(1)

To show this, we use first step together with Th.16.0.2 (v) (Meyn and Tweedie (2009)).

We obtain that there exists π̃ (σ, g) where

∥∥∥P n (σ, g) ((x, u) , .)− π̃ (σ, g)
∥∥∥
TV

≤ 2rn

where r = 1− ν (R2). Thus, we deduce :∣∣∣∣ ∫
R2

ψAV (σ, g, y, v) dπ̃l (σ, g, x, u) (y, v)−
∫
R2

ψAV (σ, g, y, v) dπ̃ (σ, g) (y, v)

∣∣∣∣
≤

∥∥∥ψAV
∥∥∥
∞

∥∥∥π̃l (σ, g, x, u)− π̃ (σ, g)
∥∥∥
TV

≤ 2
∥∥∥ψAV

∥∥∥
∞
rl (2.67)
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We want to show that ∀ε > 0, ∃N > 0 such that ∀n ≥ N :

∣∣∣∣ n−1∑
l=0

∫
R2

ψAV (σ, g, y, v) dπ̃l (σ, g, x, u) (y, v)− n

∫
R2

ψAV (σ, g, y, v) dπ̃ (σ, g) (y, v)

∣∣∣∣
< εn (2.68)

The rest is a straightforward analysis exercise. Let ε > 0. ∃N1 > 0 such that

rN1 < ε
2
. Choosing N > 8N1ε

−1‖ψAV ‖−1
∞ , we first use the triangular inequality, and

then split the sum of the left part of (2.68) in two parts, one up to N1 and the other

one up to N. We use (2.67) in the second part to obtain (2.68).

Fourth step : Proving the Lemma. Let w > 0. From Lemma 9, we just have to

show that

α2
n

�wα−2
n h(n)−1�∑
i=1

∣∣∣∣ hn−2∑
j=0

∫
R2

ψAV
(
στhi−1,n

, gτhi−1,n
, α−1

n y, α−2
n v

)
dπ̃i−1,j,n (y, v)

−hnφAV
(
στhi−1,n

, gτhi−1,n

) ∣∣∣∣
tends to 0 in probability. Using third step together with standard results on regular

conditional distributions (see for instance Breiman (1992)), we prove the lemma.

Lemma 15.

α2
n

∑
i∈An

Eτhi−1,n

[(
σ
(1)

τhi−1,n

)2 (
σ
(2)

τhi−1,n

)2

hnφ
AV

(
στhi−1,n

, gτhi−1,n

)
Δτhi,n

(
Eτhi−1

[
Δτhi,n

])−1
]

=
∑
i∈An

Eτhi−1,n

[
φAV

(
στhi−1,n

, gτhi−1,n

)
Δτhi,n

(
φτ
τhi−1,n

)−1
]
+ op(1)
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Proof. First step : Defining⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ui,n :=

∑hn−2
j=0

∫
X
ψτ

(
στhi−1,n

, gτhi−1,n
, x, u

)
dπ̃i−1,j,n (x, u)

A0 := α2
n

∑
i∈An

Eτhi−1,n

[
hnφ

AV
(
στhi−1,n

, gτhi−1,n

)
Δτhi,n

(
Eτhi−1

[
Δτhi,n

])−1
]

A1 := α2
n

∑
i∈An

Eτhi−1,n

[
hnφ

AV
(
στhi−1,n

, gτhi−1,n

)
Δτhi,n (ui,n)

−1
]

we have that A0 = A1 + op (1). To show this, in light of Lemma 11, we have that∣∣∣∣Eτhi−1,n

[
Δτhi,n

]− ui,n

∣∣∣∣ ≤ h (n)Cn

where Cn tends to 0 in probability. From this, we can easily show that A0 = A1+op (1).

Second step : We have that

A1 =
∑
i∈An

Eτhi−1,n

[
φAV

(
στhi−1,n

, gτhi−1,n

)
Δτhi,n

(
φτ
τhi,n

)−1
]
+ op(1)

To prove it, we can mimic the proof of Lemma 14, together with Lemma 11.

2.8.2 Computation of the limits of 〈Mn〉t, 〈Mn, X(1)〉t and 〈Mn, X(2)〉t

〈Mn〉t =
∑
i∈An

Eτhi−1,n

[(
ΔMn

τhi,n

)2
]
+ op(1)

= α−2
n

∑
i∈An

Eτhi−1,n

[
hn∑
u=2

(
N(i−1)hn+u

)2
+ 2N(i−1)hn+uN(i−1)hn+u+1

]
+ op(1)

= α2
n

∑
i∈An

hn−2∑
j=0

∫
R2

ψAV
(
στhi−1,n

, gτhi−1,n
, α−1

n x, α−2
n u

)
dπ̃i−1,j,n (x, u) + op(1)

where we used Lemma 2.2.11 of Jacod and Protter (2012) in first equality, Lemma 12

in second equality, Lemma 13 in third equality.
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We deduce (using Lemma 14 in first equality and Lemma 15 in third equality)

〈Mn〉t = α2
n

∑
i∈An

hnφ
AV
τhi−1,n

+ op(1)

= α2
n

∑
i∈An

Eτhi−1,n

[
hnφ

AV
τhi−1,n

Δτhi,n

(
Eτhi−1

[
Δτhi,n

])−1
]
+ op(1)

=
∑
i∈An

Eτhi−1,n

[
φAV
τhi−1,n

Δτhi,n

(
φτ
τhi,n

)−1
]
+ op(1)

Using Lemma 2.2.11 of Jacod and Protter (2012) again, we deduce :

〈Mn〉t =
∑
i∈An

φAV
τhi−1,n

Δτhi,n

(
φτ
τhi,n

)−1

+ op(1)

Using Lemma 5 together with Prop. I.4.44 (page 51) in Jacod and Shiryaev (2003),

we obtain

〈Mn〉t →
∫ t

0

φAV
s (φτ

s)
−1 ds (2.69)

Using the same approximations and computations, we also compute :

〈Mn, X(1)〉t →
∫ t

0

φAC1
s (φτ

s)
−1 ds (2.70)

〈Mn, X(2)〉t →
∫ t

0

φAC2
s (φτ

s)
−1 ds (2.71)

2.8.3 Computation of the asymptotic bias and variance

We follow the idea in 1-dimension in pp. 155-156 of Mykland and Zhang (2012), and

define an auxiliary martingale

M̃n
t =Mn

t −
∫ t

0

k(1)s dX(1)
s −

∫ t

0

k1,⊥s dX1,⊥
s
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where X1,⊥
t is defined in (2.31). Using (2.70), we deduce :

〈M̃n, X(1)〉t = 〈Mn, X(1)〉t −
∫ t

0

k(1)s d〈X(1)〉s
P→

∫ t

0

φAC1
s (φτ

s)
−1 ds−

∫ t

0

k(1)s

(
σ(1)
s

)2
ds

Hence, we choose

k(1)s =
(
σ(1)
s

)−2
φAC1
s (φτ

s)
−1

By the same techniques that we used to compute (2.70), we have that :

〈Mn,

∫ .

0

ρ1,2s σ(2)
s dB(1)

s 〉t →
∫ t

0

(
σ(1)
s

)−1
σ(2)
s ρ1,2s φAC1

s (φτ
s)

−1 ds (2.72)

Using (2.71) and (2.72) we compute :

〈M̃n, X1,⊥〉t = 〈Mn, X1,⊥〉t −
∫ t

0

k1,⊥s d〈X1,⊥〉s

= 〈Mn, X(2) −
∫ .

0

ρsσ
(2)
s dB(1)

s 〉t −
∫ t

0

k1,⊥s d〈X1,⊥〉s

= 〈Mn, X(2)〉 − 〈Mn,

∫ .

0

ρsσ
(2)
s dB(1)

s 〉t −
∫ t

0

k1,⊥s d〈X1,⊥〉s
P→

∫ t

0

(
φAC2
s − (

σ(1)
s

)−1
σ(2)
s ρ1,2s φAC1

s

)
(φτ

s)
−1 ds

−
∫ t

0

k1,⊥s

(
1− (

ρ1,2s

)2) (
σ(2)
s

)2
ds

Hence, we choose

k1,⊥s =
(
1− (

ρ1,2s

)2)−1 ((
σ(2)
s

)−2
φAC2
s − (

σ(1)
s σ(2)

s

)−1
ρ1,2s φAC1

s

)
(φτ

s)
−1

By (A4), there exists S > 0 such that the S Brownian motions {D(1), ..., D(S)} generate

the filtration (Ft)t≥0. To show that 〈M̃n, D(s)〉t tends to 0 in probability, we decompose

D(s) = Ds,1 + Ds,2 where Ds,1 belongs to the space spanned by {X(1), X(2)}, Ds,2 is
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orthogonal to this space. By what precedes, we have clearly 〈M̃n, Ds,1〉t tends to 0 in

probability. Also, Ds,2 is a martingale that is, conditionally on the observations times

of both processes, independent of M̃n. Thus we also deduce that 〈M̃n, Ds,2〉t converges

to 0 in probability.

We can now compute :

〈M̃n〉t = 〈Mn −
∫ .

0

k(1)s dX(1)
s −

∫ .

0

k1,⊥s dX1,⊥
s 〉t

= 〈Mn〉t +
∫ t

0

(
σ(1)
s

)2 (
k(1)s

)2
ds+

∫ t

0

(
σ(2)
s

)2 (
1− (

ρ1,2s

)2) (
k1,⊥s

)2
ds

− 2

∫ t

0

k(1)s d〈X(1),Mn〉s − 2

∫ t

0

k1,⊥s d〈X1,⊥,Mn〉s
P→

∫ t

0

(
φAV
s + 2

(
k(1)s

(
σ(1)
s

)−1
σ(2)
s ρ1,2s φAC1

s − (
k1s + k1,⊥s

)
φAC2
s

))
(φτ

s)
−1

+
(
σ(1)
s

)2 (
k(1)s

)2
+
(
σ(2)
s

)2 (
1− (

ρ1,2s

)2) (
k1,⊥s

)2
ds

By letting

AVs =
(
φAV
s + 2

(
k(1)s

(
σ(1)
s

)−1
σ(2)
s ρ1,2s φAC1

s − (
k1s + k1,⊥s

)
φAC2
s

))
(φτ

s)
−1

+
(
σ(1)
s

)2 (
k(1)s

)2
+
(
σ(2)
s

)2 (
1− (

ρ1,2s

)2) (
k1,⊥s

)2
we deduce using Theorem 2.28 in Mykland and Zhang (2012) that stably in law as

αn → 0, :

α−1
n

(
R̂CV t,n −RCVt

)
→

∫ t

0

k(1)s dX(1)
s +

∫ t

0

k1,⊥s dX1,⊥
s +

∫ t

0

(AVs)
1/2 dW̃s

Now, we can express the asymptotic bias ABt =
∫ t

0
k
(1)
s dX

(1)
s +

∫ t

0
k1,⊥s dX1,⊥

s differently
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as

ABt =

∫ t

0

k(1)s dX(1)
s +

∫ t

0

k1,⊥s (1− (
ρ1,2s

)2
)1/2σ(2)

s dB1,⊥
s

=

∫ t

0

k(1)s dX(1)
s −

∫ t

0

k1,⊥s ρ1,2s σ(2)
s dB(1)

s +

∫ t

0

k1,⊥s ρ1,2s σ(2)
s dB(1)

s

+

∫ t

0

k1,⊥s

(
1− (

ρ1,2s

)2)1/2

σ(2)
s dW 1,⊥

s

=

∫ t

0

(
k(1)s − k1,⊥s ρ1,2s σ(2)

s

(
σ(1)
s

)−1
)
dX(1)

s +

∫ t

0

k1,⊥s dX(2)
s

We thus deduce the expression of AB(1)
s and AB(2)

s .
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CHAPTER 3

ESTIMATING THE INTEGRATED PARAMETER IN THE

LOCALLY PARAMETRIC MODEL

3.1 Introduction

3.1.1 Time-varying parameter models

Modeling dynamics is very important in various fields, such as finance, economics,

physics, environmental engineering, geology or sociology. (Semi)parametric time de-

pendent models can deal with one type of dynamics, the temporal evolution of systems.

This was extensively studied in Baillie and Bollerslev (1992), Robins and Tsiatis (1992),

Fan et al. (2003) and Chen and Fan (2006) among others. By definition, semipara-

metric approaches come with the strong assumption that an underlying parameter is

non time-varying. Au contraire, as time goes by, the structure driving the observa-

tions is most likely evolving. Thus, questions about the constancy of the parameter,

which would stay the same through thick and thin, are raised. To corroborate this

natural skepticism, it can even be the case that empirical work strongly suggests that

the non time-varying assumption is too restrictive. To acknowledge the issue, one can

for instance build a varying-coefficient model as in Fan and Gijbels (1996), Hastie and

Tibshirani (1993) or Fan and Zhang (1999) when regression and generalized regres-

sion models are involved, locally stationary processes following the work of Dahlhaus

(1997, 2000), Dahlhaus and Rao (2006), or any other time-varying parameter model,

e.g. Stock and Watson (1998) and Kim and Nelson (2006).

Models of the variance of the return terms followed exactly this path. Originally, it

was assumed that the returns Ri := Yi−Yi−1 of a time-series {Y1, Y2, . . . , Yn} observed at

71



www.manaraa.com

regular times {τ1, τ2, . . . , τn} were conditionally homoskedastic with variance parameter

σ, and they were split as Ri = σzi where zi was the stochastic piece, typically a Gaussian

with a time-increment variance Δτi := τi − τi−1. However, on the parametric side,

Engle (1982) allowed conditional heteroskedasticity, the variance component following

a moving-average (MA) model. He was soon followed by Bollerslev (1986) and many

other authors like Nelson (1991) and Engle and Ng (1993) who allowed respectively

an auto-regressive-moving-average (ARMA) and more general models for the evolution

in time of the variance parameter σ. Taking a nonparametric approach, the analysis

of high-frequency financial data gave rise to the Stochastic Volatility model where log

prices follow a local martingale and returns are of the form

Ri :=

∫ τi

τi−1

σtdWt. (3.1)

The object of interest, which used to be the fixed volatility parameter, became the

integrated volatility (IV), defined as

IVt =

∫ t

0

σ2
sds. (3.2)

Time-varying volatility is of substantial importance in modeling for options pricing

(see Hull and White (1987), Stein and Stein (1991), Heston (1993) and Ball and Roma

(1994)). In order to price using the formula (3.2), one can first estimate it as in An-

dersen and Bollerslev (1998a,b), Andersen, Bollerslev, Diebold and Labys (2001,2003),

Barndorff-Nielsen and Shephard (2001,2002), Barndorff-Nielsen (2004), Jacod and Prot-

ter (1998), Zhang (2001) and Mykland and Zhang (2006).
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3.1.2 The serious statistical implications of assuming that a parameter

is non time-varying when it is

We remind the reader that assuming that θ∗ is constant when it’s not can raise serious

estimation issues. It means that we are using the estimator with the wrong model. In

likelihood theory, ever since Fisher (1922, 1925) introduced the method of maximum

likelihood, a significant body of the literature has taken an interest in the asymptotic

behavior of the MLE when the model is misspecified. This was pioneered by Berk (1966,

1970) for the Bayesian approach and Huber (1967), who took the classical perspective.

More recently, White (1982), among numerous other authors, also investigated the

issue and showed that the Quasi Maximum Likelihood Estimator (QMLE) is no longer

necessarily consistent with the object of interest, in our case the integrated parameter

(1.6). The author showed that the QMLE can converge to a value, but this is not

necessarily the one the econometrician has in mind. Also, the estimated standard

deviation can be wrong.

Consequently, this has lead to wrong inferences, building confidence intervals of

the wrong size, rejecting or accepting hypothese with a probability different from the

acceptance rate, setting wrong forecast intervals and so on. This is much of the same

problem as the one we face when we are fitting a general linear model (GLM) and we

encounter over-dispersion (see p.124 of McCullagh and Nelder (1989)). This issue is

easily and very often overlooked, even if it seems to be the norm in practice.

3.2 The setup

3.2.1 Data-Generating Mechanism

We assume that we infer from the dr-dimensional vectors {R1,n, . . . , RNn,n}, which are

functions of the observations where Nn can be random, the observation times are such

that τ0,n := 0 < τ1,n < . . . < τNn,n ≤ T and
[
τi−1,n, τi,n

]
is the time block corresponding
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to Ri,n. As an example, Ri,n can be defined as the (possibly log) returns of the original

observations. As such, we will refer abusively to Ri,n as returns in the rest of the

chapter. The reader should keep in mind that it is not always the case that {R1,n,

. . . , RNn,n} can be expressed as returns from the original observations. We assume that

the returns depend on the underlying parameter process θ∗t .

3.2.2 The parameter

We will assume that the p-dimensional parameter process θ∗t :=
(
(θ∗t )

(1), . . . , (θ∗t )
(p)
)
,

which is restricted to lie in K, a (not necessarily compact) subset of Rp, is a continuous

local martingale of the form

θ∗t :=
∫ t

0

σθ
sdW

θ
s (3.3)

where σθ
t is a random nonnegative process (of dimension p × p), and W θ

t a standard

p-dimensional Brownian motion. The parameter θ∗t can be for example equal to the

volatility, the high-frequency covariance, the betas, etc.

We don’t assume any independence between θ∗t and the other quantities driving

the observations, such as the Brownian motion Wt of the efficient price process. In

particular, there can be leverage effect (see e.g. Wang and Mykland (2014), Aït-Sahalia

et al. (2014)). Also, the arrival times τi,n and the parameter θ∗t can be correlated, i.e.

there is endogeneity in sampling times.

In the rest of this chapter, for any u-dimensional vector ν := (ν(1), . . . , ν(u)), we will

use the notation | ν |:= ∑u
k=1 |ν(k)| when referring to the Manhattan norm. Also, for

any θ ∈ K, we define the subvector θ+ of 1-dimensional parameters restricted to be

positive. We assume that | θ∗t | is locally bounded and (θ∗t )
+ is locally bounded away

from 0. Furthermore, we assume that the volatility of the parameter, σθ
t , is locally

bounded.
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3.2.3 Asymptotics

There are commonly two choices of asymptotics in the literature: the high-frequency

asymptotics, which makes the number of observations explode on [0, T ], and the low-

frequency asymptotics, which takes T to infinity. We chose the former one. Investigating

the low-frequency implementation case is beyond the scope of this chapter1.

Furthermore, when assuming high-frequency asymptotics, there are several ways to

make the number of observations explode. Zhang et al. (2005) considered the fixed

noise case. Consequently, the rate of convergence to estimate volatility is no longer

n
1
2 , but n

1
4 . In the model with uncertainty zones, Robert and Rosenbaum (2011, 2012)

made the tick size vanish. The volatility’s convergence rate is preserved in this case.

We follow the latter idea by scaling (and thus keeping) the structure which drives the

observations asymptotically. In particular, the variance of the efficient returns and the

variance of the microstructure noise goes to 0 at the same speed n.

3.3 Estimation

We need first to fix the vocabulary for the rest of this chapter. Parametric model will

refer to the (non time-varying) parametric model of the econometrician, and not to the

time-varying parameter model. Correspondingly, parametric estimator stands for the

parametric estimator (in the parametric model).

Since the stochastic parameter θ∗t is continuous, the parametric model is not too far

from the time-varying parameter model locally. We recall that hn corresponds to the

block size. If we let Θ̃1,n := θ∗0 be the initial parameter value and we define on the first

block for j = 1, · · · , hn the returns approximations R̃j,n which follows the parametric

model with mixture of parameters Θ̃1,n, then R̃j
1,n and Rj,n are very close to each other

1If we set down the asymptotic theory in the same way as in p.3 in Dalhaus (1997), we conjecture
that the results of this chapter would stay true.
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since the observation times τ1,n, · · · , τhn,n are in a small neighborhood of 0. Thus,

because true and approximated returns are approximately the same, one can apply the

parametric estimator to the observed returns Rj,n, even though they are not following

the parametric model. We thus obtain an estimate Θ̂1,n of the initial parameter value

Θ̃1,n. We also define the spot parameter’s average on the first block as

Θ1,n :=

∫ T1,n

T0,n
θ∗sds

ΔT1,n

, (3.4)

where the first block inital time T0,n := 0 and final time T1,n := τhn,n. Since the first

block length ΔT1,n is very small, the value of Θ̃1,n is approximately equal to the average

of the spot parameter on the first block Θ1,n. Thus, Θ̂1,n can be used to estimate Θ1,n.

More generally, for any i = 2, · · · , Bn we define the spot parameter’s average on the

ith block as

Θi,n :=

∫ Ti,n

Ti−1,n
θ∗sds

ΔTi,n

, (3.5)

where Ti,n := min(τihn , T ). Let Bn := �Nnh
−1
n � be the number of blocks. For any

i = 2, · · · , Bn we estimate in the same way Θi,n with initial value Θ̃i,n := θ∗Ti−1,n
using

the parametric estimator on the ith block Θ̂i,n. Then, we take the weighted sum of Θ̂i,n

and obtain an estimator of the integrated spot process

Θ̂n :=
1

T

Bn∑
i=1

Θ̂i,nΔTi,n. (3.6)

Note that each block includes exactly hn observations, except for the last one, which

might include fewer observations. We call (3.6) the local parametric estimator (LPE),

since we are are estimating with the parametric estimator on each block.
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3.4 Outline of the problem

3.4.1 A simple model

We focus on a simple setting in this section. First, we work with dr := 2. Also, we

assume that the observations occur at equidistant time intervals Δτn := T
n
, so that

τi,n = i
n
T and thus R(2)

i,n := Δτn. For the rest of this section, we will forget about the

second component of the returns Ri,n, which doesn’t provide us any further information,

and pretend that Ri,n is real-valued. Furthermore, the parametric model is assumed

to be very simple. It assumes that there exists a parameter θ∗ ∈ K such that Ri,n are

independent and identically distributed (IID) random functions of θ∗. If we introduce

Ui,n an adequate IID sequence of random variables, we can express the returns as

Ri,n := Fn

(
Ui,n, θ

∗), (3.7)

where Fn(x, y) is a non-random function. In Equation (3.7), Ui,n can be seen as the

random innovation. Since θ∗t can in fact be time-varying, Ri,n don’t necessarily follow

(3.7). A formal time-varying generalization of (3.7) will be given in (3.10). In general,

Ri,n are neither identically distributed nor independent. Ri,n are not even necessarily

conditionally independent given the true parameter process θ∗t , as we can see in the

following two toy examples.

Example 7. (estimating volatility) Consider when θ∗t := σ2
t (the volatility is thus as-

sumed to follow (3.3)), and Ri,n :=
∫ τi,n
τi−1,n

σsdWs, where Wt is a standard 1-dimensional

Brownian motion. In this case, the parameter space is K := R+
∗ . The parametric

model assumes θ∗ := σ2 and that the distribution of the returns is Ri,n = σΔWτi,n ,

where ΔWτi,n := Wτi,n −Wτi−1,n
is the increment of the Brownian motion between the

(i − 1)th observation time and the ith observation time and σ is the fixed volatility.

Under that assumption, the returns are IID. Under the time-varying parameter model,

Ri,n are clearly not IID, and they are also not conditionally independent given the whole
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volatility process σ∗
t if there is a leverage effect.

Example 8. (estimating the rate of a Poisson process) Suppose an econometrician ob-

serves data on the number of events (such as trades) in an arbitrary asset, and thinks

the number of events happening between 0 and t, Nt, follows a homogeneous Poisson

process with rate λ. Because she doesn’t have access to the raw data, she can’t ob-

serve directly the exact time of each event. Instead, she only observes the number

of events happening on a period (for instance a ten-minute block) [τi−1,n, τi,n), that is

Yi,n = N−
τi,n

− Nτi−1,n
. This is an example where the series is already stationary un-

der the parametric model assumption, and thus Yi,n = Ri,n. If the econometrician’s

assumption of homogeneity is true, the returns are IID. In case of heterogeneity, the

parameter rate λt will be assumed to follow (3.3), Nt will be a nonhomogenous Poisson

process, and the returns Ri,n will be neither identically distributed nor independent.

We need to introduce some definitions. On a given block i = 1, · · · , Bn the ob-

served returns will be called R1
i,n, · · · , Rhn

i,n. Formally, it means that Rj
i,n := R(i−1)hn+j,n

for any j = 1, · · · , hn. In analogy with Rj
i,n, we introduce the approximated returns

R̃1
i,n, . . . , R̃

hn
i,n on the ith block. We also introduce the corresponding observation times

τ ji,n := τ(i−1)hn+j,n for j = 0, . . . , hn. Note that τ 0i,n = τhn
i−1,n. Finally, for j = 1, . . . , hn

we define the time increment between the (j − 1)th return and the jth return of the

ith block as Δτ ji,n = τ ji,n − τ j−1
i,n .

We are now providing a generalization of the parametric model (3.7) as well as an

expression of the approximated returns. To deal with the former, we assume that in

general

Ri,n := Fn

(
Ui,n, {θ∗s}τi−1,n≤s≤τi,n

)
. (3.8)

The time-varying parameter model in (3.8) is a natural extension of the parametric

model (3.7) because the return Ri,n can depend on the parameter process path from

the previous sampling time τi−1,n and up to the current sampling time τi,n. As Ri,n
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depends on the whole parameter path, it seems natural to allow Ui,n to be itself a

process path. For example, when assuming that the parameter is the volatility process,

we will assume that Ui,n is equal to the underlying Brownian motion Wt path (see

Example 9 for more details). Also, as Ui,n is the random innovation, it should be

independent of the parameter process path, but not on the current parameter path. In

the case of volatility, it means that we allow for the leverage effect. A simple particular

case of (3.8) is

Ri,n := Fn

(
Ui,n, θ

∗
τi−1,n

)
, (3.9)

i.e. we fix the path parameter equal to its initial value. The time-varying friction pa-

rameter of the model with uncertainty zones is defined as a mix of (3.8) and (3.9) of the

model with uncertainty zones (see Section 3.7.1 for details). Finally, the approximated

returns R̃i,n follow a mixture of the parametric model (3.7) with initial block parameter

value. We are now providing a formal definition of our intuition. We assume that

Rj
i,n := Fn

(
U j
i,n, {θ∗s}τ j−1

i,n ≤s≤τ ji,n

)
(3.10)

R̃j
i,n := Fn

(
U j
i,n, Θ̃i,n

)
(3.11)

where the random quantity U j
i,n takes values on a space Un that can be functional2 and

that can depend on n, U j
i,n are IID for a fixed n but the distribution can depend on

n, and Fn(x, y) is a non-random function3. Note that (3.10) is a mere expression of

2Un is a Borel space, for example the space C[0,Δτn] of continuous paths parametrized by time
t ∈ [0, τn].

3Let C(R+) be the space of continuous paths parametrized by time t ∈ R+, which is a Borel space.
Consequently, Un × C(R+) is also a Borel space. We assume that Fn(x, y) is jointly measurable real-
valued function on Un×C(R+). Note that the advised reader will have seen that a priori {θ∗s}τj−1

i,n ≤s≤τj
i,n

is defined on C[0, τn] (after according translation) in (3.10) and Θ̃i,n is a vector in (3.11), whereas
they should be defined on the space C(R+) according to the definition. We match the definitions by
extending them as continuous paths on R+. Formally, if θt ∈ C[0, τn], we extend it as θt := θτn for all
t > τn. Similarly, if θ ∈ K, we extend it as θt := θ for all t ≥ 0.
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(3.8) using a different notation. For any block i = 1, . . . , Bn and for any observation

time j = 0, . . . , hn of the ith block, we define Ij
i,n

4 the information up to time τ ji,n. The

crucial assumption is that U j
i,n has to be independent of the past information5 (and in

particular of Θ̃i,n). U j
i,n can be seen as the "random innovation" between τ j−1

i,n and τ ji,n.

Note that we don’t assume any independence between the "random innovation" U j
i,n

and the parameter process {θ∗s}τ j−1
i,n ≤s≤τ ji,n

. We provide directly the definitions of Fn and

U j
i,n in the two toy examples.

Example 9. (estimating volatility) In this case, Un is defined as the space C[0,Δτn] of

continuous paths parametrized by time t ∈ [0, τn], U j
i,n := {ΔW[τ j−1

i,n ,s]}τ j−1
i,n ≤s≤τ ji,n

are the

Brownian motion increment path processes between two consecutive observation times.

If we assume that (W θ
t ,Wt) is jointly a standard 2-dimensional Brownian motion, then

the random innovation U j
i,n is indeed independent of the past in view of the Markov

property of Brownian motions. We also define Fn(ut, θt) :=
∫ τn
0
θsdus. We thus obtain

that the returns are defined as Rj
i,n :=

∫ τ ji,n

τ j−1
i,n

σ∗
sdWs and the approximated returns

R̃j
i,n := σ∗

τ0i,n
ΔW[τ j−1

i,n ,τ ji,n]
are the same quantity when holding the volatility constant

on the block.

Example 10. (estimating the rate of a Poisson process) We assume that the rate of

the inhomogeneous Poisson process is βnλt, where βn is a non time-varying and non-

random quantity such that βnΔτn := 1. In this case, we assume that Un is the space

of increasing paths on R+ starting from 0 which takes values in N and whose jumps

are equal to 1. We also assume that for any path in Un, the number of jumps is finite

on any compact of R+. U j
i,n can be defined as standard Poisson processes {N i,j,n

t }t≥0,

independent of each other. We also have Fn(ut, θt) := u∫ τn
0 βnθsdus

. Thus, if we let

4In this chapter, we will be using the term information to refer to the mathematical object of
filtration. Let (Ω,F , P ) be a probability space. Define the sorted information {Ik,n}k≥0 such that
for any non-negative integer k that we can decompose as k = (i − 1)hn + j where i ∈ {1, . . . , Bn}
and j ∈ {0, . . . , hn}, Ik,n := Ij

i,n. We assume that Ik,n is a (discrete-time) filtration on (Ω,F , P ). In
addition, we assume that {θ∗s}0≤s≤τj

i,n
and U j

i,n are Ij
i,n-measurable.

5past information means up to time τ j−1
i,n
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tji,n :=
∫ τ ji,n

τ j−1
i,n

βnλ
∗
sds, the returns are the time-changed Poisson processes

Rj
i,n = N i,j,n

tji,n
, (3.12)

R̃j
i,n = N i,j,n

βnΔτ ji,nλ
∗
τ0
i,n

. (3.13)

3.4.2 Consistency

In the following of this section and Section 3.6, we will make the block size hn go to

infinity

hn → ∞. (3.14)

Furthermore, we will make the block length ΔTi,n vanish asymptotically. Because we

assumed observations occur at equidistant time, this can be expressed as

hnn
−1 → 0. (3.15)

We can rewrite the consistency of Θ̂n as

Bn∑
i=1

(
Θ̂i,n −Θi,n

)
ΔTi,n

P→ 0. (3.16)

where the formal definition of Θ̂i,n can be found in (3.22). In order to show (3.16), we can

decompose the increments (Θ̂i,n−Θi,n) into the part related to misspecified distribution

error, the part on estimation of approximated returns error and the evolution in the

spot parameter error

Θ̂i,n −Θi,n =
(
Θ̂i,n − ̂̃Θi,n

)
+
(̂̃Θi,n − Θ̃i,n

)
+
(
Θ̃i,n −Θi,n

)
, (3.17)
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where ̂̃Θi,n, which is defined formally in (3.23), is the parametric estimator used on

the underlying non-observed approximated returns. It is not a feasible estimator and

appears in (3.17) only to shed light on the way we can obtain the consistency of the

estimator. We first deal with the last error term of (3.17), which is due to the non-

constancy of the spot parameter θ∗t . Note that

Bn∑
i=1

(
Θ̃i,n −Θi,n

)
ΔTi,n =

Bn∑
i=1

(
θ∗Ti−1,n

ΔTi,n −
∫ Ti,n

Ti−1,n

θ∗sds
)

(3.18)

and thus we deduce from Riemann-approximation6 that

Bn∑
i=1

(
Θ̃i,n −Θi,n

)
ΔTi,n

P→ 0 (3.19)

To deal with other terms of (3.17), we make another key asymptotics assumption for

this section. We further assume that there exists a sequence αn with for all θ ∈ K

αnF1(U
j
i,1, θ)

D
= Fn(U

j
i,n, θ) (3.20)

The equality (3.20) means that we scale and keep the structure that drives the next

return asymptotically. This is a relatively strong assumption, and in particular it

prevents us from allowing different returns distribution shape when n is varying, except

for the scaling constant. We provide examples of αn.

Example 11. (estimating volatility) Because we assume that Fn(U
j
i,n, θ) are normally

distributed with null-mean and variance θ2Δτi,n and since the normal distribution is

scale invariant, we have (3.20) with αn = n− 1
2 .

Example 12. (estimating the rate of a Poisson process) (3.20) is satisfied with αn = 1.

Furthermore, we assume that for any positive integer k, the practitioner has at

6see i.e. Proposition 4.44 in p.51 of Jacod and Shiryaev (2003)
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hand an estimator θ̂k,n := θ̂k,n(r1,n; . . . ; rk,n), which depends on the input of returns

{r1,n; . . . ; rk,n}, and also asymptotically of n in the following sense

θ̂k,n(r1,n; . . . ; rk,n) = θ̂k,1(α
−1
n r1,n; . . . ;α

−1
n rk,n). (3.21)

This makes sense to use the same estimator on a scaled version (which in practice

depends of the sampling frequency) of the returns in light of (3.20). In other words,

the estimator θ̂k,n is scale invariant. We provide the estimators in the couple of toy

examples.

Example 13. (estimating volatility) The estimator is the scaled usual RV, i.e. θ̂k,n(r1,n;

. . . ; rk,n) := T−1k−1n
∑k

j=1 r
2
j,n. Note that θ̂k,n can also be asymptotically seen as the

MLE (see the discussion pp. 112-115 of Mykland and Zhang (2012)). We can verify

(3.21) easily.

Example 14. (estimating the rate of a Poisson process) The estimator to be used is the

return mean θ̂k,n(r1,n; . . . ; rk,n) := k−1
∑k

j=1 rj,n. It is straightforward to see (3.21).

On each block i = 1, . . . , Bn we estimate the local parameter as

Θ̂i,n := θ̂hn,n

(
R1

i,n; . . . ;R
hn
i,n

)
. (3.22)

The non-feasible estimator ̂̃Θi,n is defined as the same parametric estimator with ap-

proximated returns as input instead of observed returns

̂̃Θi,n := θ̂hn,n

(
R̃1

i,n; . . . ; R̃
hn
i,n

)
. (3.23)

Note that (3.23) is infeasible because the approximated returns R̃j
i,n are non-observable

quantities. For any M > 0, we define KM := {θ ∈ K : | θ |≤ M and θ+ ≥ M−1} a

subset of K. In order to obtain the consistency of (3.6), we make the assumption that

the parametric estimator is L1-convergent, locally uniformly in the model parameter θ if

we actually observes returns coming from the parametric model. This can be expressed
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in the following condition.

Condition (C1). For any M > 0,

sup
θ∈KM

E

[∣∣θ̂hn,n(Fn(U
1
1,n, θ); . . . ;Fn(U

hn
1,n, θ))− θ

∣∣] → 0.

Remark 9. (consistency) Note that L1-convergence is slightly stronger than the simple

consistency of the parametric estimator. Nonetheless, in most applications, we will

have both.

Under Condition (C1), standard results on regular conditional distributions7 give

us that the error made on the estimation of the underlying non-observed returns tends

to 0, i.e.

Bn∑
i=1

(̂̃Θi,n − Θ̃i,n

)
ΔTi,n

P→ 0. (3.24)

To deal with the first term of (3.17), we need to make sure that we can control the

discrepancy between the estimate made on the observed returns and the estimate made

on the underlying approximated returns, uniformly in the initial parameter and in the

future path of the parameter process. This can be expressed as the new following

assumption. For any M > 0, we define EM the space of all null-drift continuous p-

dimensional Itô-process θt such that the initial value θ0 is non-random, θt ∈ KM for

all 0 ≤ t ≤ T , the volatility of θt is bounded by M for all 0 ≤ t ≤ T , and for any

j = 1, · · · , hn we have U j
1,n independent of the past path {θs}0≤s≤τ j−1

1,n
.

Condition (C2). We have

sup
θt∈EM

E

[∣∣∣θ̂hn,n

(
Fn(U

1
1,n, θ0), . . . , Fn(U

hn
1,n, θ0)

)
7see for instance Leo Breiman (1992), see Appendix for more details.
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−θ̂hn,n

(
Fn(U

1
1,n, {θs}0≤s≤τ11,n

), . . . , Fn(U
hn
1,n, {θs}τhn−1

1,n ≤s≤τhn1,n
)
)∣∣∣] → 0.

Condition (C2) implies8 that the error due to the local model approximation vanishes

in the limit, i.e.

Bn∑
i=1

(Θ̂i,n − ̂̃Θi,n)ΔTi,n
P→ 0. (3.25)

We can now summarize the theorem on consistency in this very simple case where ob-

servations occur at equidistant time intervals and returns are IID under the parametric

model.

Theorem (Consistency). Under Condition (C1) and Condition (C2), we have the

consistency of (3.6), i.e.

Θ̂n
P→ Θ.

We obtain the consistency in the couple of toy examples9.

Remark 10. (adding a drift) In Example 7, by Girsanov’s theorem, together with local

arguments (see, e.g., pp.158-161 in Mykland and Zhang (2012)), we can weaken the

price and volatility local-martingale assumption by allowing them to follow an Itô-

process (of dimension 2), with volatility matrix locally bounded and locally bounded

away from 0, and drift locally bounded.

Remark 11. (LPE equal to the parametric estimator) The advised reader will have

noticed that in the couple of examples, the parametric estimator is equal to the LPE.

This is because in those very basic examples, the parametric estimator is linear, i.e. for

any positive integer k and l = 1, . . . , k − 1

θ̂k,n(r1,n; . . . ; rk,n) =
l

k
θ̂l,n(r1,n; . . . ; rl,n) +

k − l

k
θ̂k−l,n(rl+1,n; . . . ; rk,n) (3.26)

8see Appendix for more details

9see Appendix for proofs
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In more general examples of Section 3.7, (3.26) will break, and we will obtain two

distinct estimators.

3.4.3 Challenges

There are three empirical reasons why the presentation above is too simple. In practice,

the observed returns can be autocorrelated, noisy and there can be endogeneity in

sampling times. Accordingly, we will build the general LPM in Section 3.5. Also, we

will investigate the limit distribution in Section 3.6.

3.5 The LPM

Let m be a nonnegative integer (which can be infinite) which stands for the order

of memory in the model. We assume that under the parametric model, Ri,n is an

homogeneous partially observed (m-dependent) Markov chain of order m, i.e. there

exists a dq-dimensional vector Qi,n such that (Qi,n, Ri,n) is an homogeneous Markov

chain of order m. Under the time-varying parameter model, it is not necessarily even

a nonhomogeneous Markov chain. Nonetheless, we will see in (3.28) that it is almost a

nonhomogeneous Markov chain (of order m), except for the evolution of the parameter

θ∗t part which is not necessarily Markovian. In particular, if we assume that the volatility

σθ
t of the parameter θ∗t is not time-varying, (Qi,n, Ri,n) is a nonhomogeneous Markov

chain (of order m). In the following, we will use the expression "Markov chain" but the

reader should understand "Markov chain under the parametric model" or even "locally

Markov chain". We also drop the part "of order m".

The interpretation of Qi,n is straightforward: it can be seen as the quantities we

don’t observe. In particular, it can include the efficient price return, whereas Ri,n would

include the noisy version of the efficient return. The reader should look at Section 3.7

to see how we identify Qi,n and Ri,n to the quantities of different models.

86



www.manaraa.com

Note that the simple model introduced in Section 3.4.1 is a particular case with m =

0. If we assume that we have regular observation times and that the microstructure noise

is uncorrelated with the efficient price and IID normally distributed, the parametric

model of the observed returns is an MA(1) (see Aït-Sahalia et al. (2005) and Xiu

(2010)). Thus, we have m = 1 in that example. The details are to be found in Section

3.7.3.

We introduce the notations d := dq+dr as well as Mi,n := (Qi,n, Ri,n) for the Markov

chain quantities, and assume that Mi,n takes values on the space Mn, which is a subset

of Rd. Also, we define the m initial values M−(m−1),n, . . . ,M0,n of the Markov chain.

Finally, we introduce the m-dimensional "memory" vector of Markov chain quantities

Mi,n := (Mi,n, . . . ,Mi−(m−1),n), which takes values on a space Mm,n (subset of Mm
n ).

The parametric model can be expressed as

Mi,n := Fn(Mi−1,n, Ui,n, θ
∗), (3.27)

where Fn(x, y, z) is a Rd-valued non-random function10, Ui,n are IID for a fixed n but

the distribution can depend on n. The parametric model (3.27) can be compared to

the simple parametric model (3.7): the only change is that we allow past-correlation in

the model. In analogy with (3.8), we assume that the time-varying parameter model

can be expressed as

Mi,n = Fn(Mi−1,n, Ui,n, {θ∗s}τi−1,n≤s≤τi,n). (3.28)

10We assume that for i any positive integer, Ui,n ∈ Un where Un is a Borel space and that Fn(x, y, z) is
defined on Mm,n×Un×Xn. Additionally, we assume that Fn(x, y, z) is a jointly measurable Rd-valued
function such that for any (Mn, Un, χn) ∈ Mm,n × Un ×Xn, we have E | Fn(Mn, Un, χn) |< ∞
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3.6 Asymptotic properties

In analogy with (3.20) of Section 3.4.2, we keep asymptotically the structure of the

returns by scaling the distribution of Mi,n. Formally, we need to introduce some defi-

nitions. For any M ∈ Mm,1, we can write

M :=

⎛⎜⎜⎝
M1,1 · · · M1,m

... . . . ...

Md,1 · · · Md,m

⎞⎟⎟⎠ .

For any d-dimensional vector α := (α(1), . . . , α(d)), we let

α ∗M :=

⎛⎜⎜⎝
α(1)M1,1 · · · α(1)M1,m

... . . . ...

α(d)Md,1 · · · α(d)Md,m

⎞⎟⎟⎠ .

Also, if α and β are u-dimensional vectors, we define α ∗ β := (α(1)β(1), . . . , α(u)β(u)).

Finally, we consider αn ∗ Mm,1 := {αn ∗ M s.t. M ∈ Mm,1}. We assume that there

exists a d-dimensional αn such that Mm,n := αn ∗Mm,1 and we have

αn ∗ F1(M, U1,1, θ)
D
= Fn(αn ∗M, U1,n, θ). (3.29)

We insist on the fact that αn has the same signification as in (3.20) (the returns are

scale-invariant) and that the notations are more involved only because the model is past-

correlated. The reader should go to Section 3.7 to see how αn is defined on different

models. Equation (3.29) is a key assumption for the proofs.

We investigate in the following the limit distribution. Formally, for a l > 0 (with
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corresponding rate of convergence n
1
l ), we aim to find the limit ditribution of

n
1
l

Bn∑
i=1

(
Θ̂i,n −Θi,n

)
ΔTi,n. (3.30)

Specifically, we want to show that (3.30) converges stably to a limit distribution. We

remind the reader that we defined stable convergence in Chapter 2.4.1. Since the

stable convergence needs a corresponding information J to be defined with, we need

to be more specific about how to obtain J . We will be needing the following technical

assumption, which turns out to be easily verified on examples of Section 3.7. The idea

goes back to Heath (1977). We define Ii,n
11 the information up to time τi,n.

Condition (E0). Ii,n can be extended into Ji,n
12, where Ji,n is the interpolated infor-

mation of a continuous information J (c)
t , i.e. Ji,n = J (c)

τi,n

In the following of Chapter 3, when using the conditional expectation Eτ

[
Z
]
13,

we will refer to the conditional expecation of Z knowing J (c)
τ . Finally, we consider

J := J (c)
T the information to go with stable convergence.

We are now more specific about the form of the parametric estimator. As in Section

3.4.2, the parametric estimator will include the returns {r1,n, . . . , rk,n} as inputs. More-

over, because the Markov chain is past-correlated, we allow the parametric estimator

to possibly depend on the m-dimensional vector of initial returns r0,n. To sum up, the

parametric estimator takes the following form

θ̂k,n := θ̂k,n(r1,n; . . . ; rk,n; r0,n). (3.31)

11We assume that Ii,n is a (discrete-time) filtration of (Ω,F , P ) such that {θ∗s}0≤s≤τi,n and Ui,n are
adapted to Ii,n. Also, we assume that the initial m-dimensional vector M0,n is I0,n-measurable.

12It means that Ji,n is a discrete filtration and for any i nonnegative integer Ii,n ⊂ Ji,n

13τ has to be a J (c)
t -stopping time
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We keep the same asymptotic property as in (3.21) and we adapt it to the multi-

dimensional case. We need some notations for this purpose. Define the part αR,n :=

(α
(dq+1)
n , . . . , α

(d)
n ) related to the observed returnsRi,n of αn. LetαααR,n := (αR,n, . . . , αR,n)

consisting of m αS,n appened together. Also, for any matrix ααα with non-zero entries,

we define ααα−1 the matrix of same dimension with each entry equal to the inverse of the

same entry of ααα. In analogy with (3.21) in Section 3.4.2, we assume that

θ̂k,n(r1,n; . . . ; rk,n; r0,n) = θ̂k,1(α
−1
R,nr1,n; . . . ;α

−1
R,nrk,n;ααα

−1
R,nr0,n) (3.32)

Let i be any positive integer. In analogy with the "block notations" of Section 3.4.1, we

define the Markov chain elements on the ith block M j
i,n :=M(i−1)hn+j,n for j = 1, . . . , hn.

We also define the initial vector of the ith block as (M0
i,n, . . . ,M

−(m−1)
i,n ) := M(i−1)hn+j,n.

For M ∈ Mm,n and j = −(m − 1), . . . , hn we let M̃ j,M
i,n be the approximations of the

Markov chain on the ith block with starting vector M. As such, we first define the initial

vector of approximation as the vector M itself, i.e. (M̃0,M
i,n , . . . , M̃

−(m−1),M
i,n ) := M.

Second, we define the m-dimensional "memory" vector of approximation as M̃j,M
i,n :=

(M̃ j,M
i,n , . . . , M̃

j−(m−1),M
i,n ). Thirdly, for any positive integer j, we define the approximated

returns by the recurrence relation similar to (3.28)

M̃ j,M
i,n := Fn(M̃

j−1,M
i,n , U j

i,n, Θ̃i,n). (3.33)

The approximated returns M̃ j,M
i,n follow a mixture of the parametric model with pa-

rameter Θ̃i,n. Finally, the infeasible estimator on the ith block ˆ̃ΘM
i,n with initial vector

M ∈ Mm,n is defined as

ˆ̃ΘM
i,n := θ̂hn,n(R̃

1,M
i,n ; . . . ; R̃hn,M

i,n ; R̃0,M
i,n ). (3.34)

The spot parameter estimator on the ith block Θ̂i,n is defined with the same parametric
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estimator, but with observed returns as input

Θ̂i,n := θ̂hn,n(R
1
i,n; . . . ;R

hn
i,n;R

0
i,n). (3.35)

Let M∗
1 ∈ Mm,1 and M∗

n := αn ∗M∗
1. We can decompose

(
Θ̂i,n −Θi,n

)
as

(
Θ̂i,n − ˆ̃Θ

M0
i,n

i,n

)
+
( ˆ̃ΘM0

i,n

i,n − ˆ̃Θ
M∗

n
i,n

)
+
( ˆ̃ΘM∗

n
i,n − Θ̃i,n

)
+
(
Θ̃i,n −Θi,n

)
(3.36)

where the first term is the error in estimation due to the use of the approximated model

(3.33) instead of the time-varying parameter model (3.28), the second term is the error

made when taking M∗
n instead of M0

i,n as initial value of the block in the mixture of the

parametric model (3.33), the third term corresponds to the error of the estimation of

the constant parameter by the underlying approximations starting with a fixed initial

value M∗
n and the last term is the error made by holding the process parameter constant

on each block. Note that ˆ̃Θ
M0

i,n

i,n is a mixture of the parametric model with parameter

Θ̃i,n and a mixture of starting value M0
i,n.

It is instructive to consider (3.36) when we assume that the time-varying parameter

model is equal to the parametric model. In that simple case, the first term and the

fourth term are equal to 0. Additionally, we can hope that under right conditions

n
1
l

Bn∑
i=1

( ˆ̃ΘM0
i,n

i,n − ˆ̃Θ
M∗

n
i,n

)
ΔTi,n ≈ 0.

Finally, if we assume that we know the convergence rate n
1
2 and the limit distribution

N (0, Vθ∗) of the parametric estimator, for any i = 1, . . . , Bn we have that h
1
2
n

(
Θ̂i,n −

θ∗
)
ΔTi,n ≈ N (0, Vθ∗)ΔTi,n and thus we can hope that

n
1
2

Bn∑
i=1

(
Θ̂i,n − θ∗

)
ΔTi,n ≈ T−1N (0, Vθ∗)
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under right assumptions (in particular on the block size hn).

The time-varying parameter model case will be very similar to the parametric model

case. Formally, we will be providing in the following conditions such that

n
1
l

Bn∑
i=1

(
Θ̃i,n −Θi,n

) P→ 0, (3.37)

n
1
l

Bn∑
i=1

( ˆ̃ΘM∗
n

i,n − Θ̃i,n

) D→ T−1
(∫ T

0

Vθ∗sds
) 1

2N (0, 1), (3.38)

n
1
l

Bn∑
i=1

( ˆ̃ΘM0
i,n

i,n − ˆ̃Θ
M∗

n
i,n

) P→ 0, (3.39)

n
1
l

Bn∑
i=1

(
Θ̂i,n − ˆ̃Θ

M0
i,n

i,n

) P→ 0. (3.40)

We make the first assumption, which is on observation times.

Condition (E1). The observation times are such that for k = 1, 2, 4, 8

inf
1≤i≤Nn

Eτi−1,n

[
(Δτi,n)

k
]
, sup
1≤i≤Nn

Eτi−1,n

[
(Δτi,n)

k
]

are exactly of order Op(n
−k). (3.41)

Remark 12. Note that condition (E1) is satisfied by the HBT model introduced in

Chapter 2.

We make a second assumption on the observation times, which is due to endogeneity.

Indeed, when approximating the returns on a block holding the parameter θ∗t constant,

we also induce a change in the observation times. In the following assumption, we

make sure that we can bound the difference in length between the approximated block

and the true block, uniformly in the initial value parameter θ0, the path of parameter

process θt and the initial Markov-chain M. For that reason, we introduce the following

notations. Let M > 0, M ∈ Mm,n and θt ∈ EM . For any i = −(m − 1), · · · , hn we

define MM,θ
i,n and MM,θt

i,n the Markov chain with initial vector M and fixed parameter
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θ ∈ KM (respectively with time-varying parameter process θt). The initial vectors are

defined as (MM,θ
−(m−1),n, . . . ,M

M,θ
0,n ) := M and (MM,θt

−(m−1),n, . . . ,M
M,θt
0,n ) := M. Also, we

define the m-dimensional "memory" vectors as MM,θ
i,n := (MM,θ

i,n , . . . ,MM,θ
i−(m−1),n) and

MM,θt
i,n := (MM,θt

i,n , . . . ,MM,θt
i−(m−1),n). Finally, for any positive integer i, the ith element of

the Markov chains are obtained by the same recurrence relations as (3.27) and (3.28).

MM,θ
i,n := Fn

(
MM,θ

i−1,n, Ui,n, θ
)
, (3.42)

MM,θt
i,n := Fn

(
MM,θt

i−1,n, Ui,n, {θs}τi−1,n≤s≤τi,n

)
. (3.43)

We define now the lengths of the first block TM,θ
1,n :=

∑hn

i=1(M
M,θ
i,n )(d) and TM,θt

1,n :=
∑hn

i=1

(MM,θt
i,n )(d).

Condition (E2). For any M > 0, we define DM := EM ×Mm,1 and we have

sup
(θt,M1)∈DM

E

[
(Tαn∗M1,θ0

1,n − Tαn∗M1,θt
1,n )4

]
= o(h4nn

−4). (3.44)

Remark 13. Condition (E2) is also satisfied by the HBT model.

The following assumption provides the existence of l′ > 0 such that the convergence

rate of the parametric estimator is n
1
l′ . In most examples, such as the MLE under

regular conditions, we have l′ = 2. Condition (E3) also assumes that the parametric

estimator is not too biased. For that purpose, we introduce the definition of the bias

on the first block BM,θ
1,n := E

[(
θ̂hn,n(R

M,θ
1,n ; . . . ;RM,θ

hn,n
;M)− θ

)
TM,θ

1,n

]
for any M ∈ Mm,n

and any θ ∈ K.

Condition (E3). For any parameter θ ∈ K, we assume that there exists a covariance
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matrix Vθ > 0 such that for any M > 0, we have uniformly in θ ∈ KM

Var
[
h

1
l′
n

(
θ̂hn,n(R

M∗
n,θ

1,n ; . . . ;R
M∗

n,θ
hn,n

;M∗
n)− θ

)
Tθ

1,n

]
= VθT

θ
1,nhnn

−1 (3.45)

+op(h
2
nn

−2)

E
[((

θ̂hn,n(R
M∗

n,θ
1,n ; . . . ;R

M∗
n,θ

hn,n
;M∗

n)− θ
)
Tθ

1,n

)4]
= O(h

4− 4
l′

n n−4) (3.46)

B
M∗

n,θ
1,n = O(hnn

−1− 1
l ) (3.47)

Remark 14. (regular observations case) The reader might get confused at first reading

with the block length term Tθ
1,n showing up in (3.45), (3.46) and (3.47). One should keep

in mind that in the simple case where observations are regular, we have Tθ
1,n := Thnn

−1.

In that case, (3.45) only assumes that the variance of the normalized error of the

parametric estimator converges uniformly, (3.46) assumes that the fourth moment of

the normalized error has bounded expectation and (3.47) that the parametric estimator

used on a block of hn observations has a bias of order at most O(n− 1
l ). If we assume

that l = 2, as we know that hn can be of order up to n
1
2 in view of (3.48), we obtain

that the bias must be of order o(hn). In the case where observations are not regular,

the presence of the random block length term Tθ
1,n doesn’t seem to make Condition

(E3) harder to verify than in the regular case, at least in the model with uncertainty

zones (See Appendix).

Remark 15. Condition (E3) is used to show (3.38).

We make a fourth assumption, which is on the block size hn. In practice, Condition

(E4) provides us with the maximum block size hn to use for constant approximation

of parameter. Note that in the most common case when l = 2 and l′ = 2, (3.49) is

automatically verified. Also in that case, (3.48) can be written as hn = o(n
1
2 ), which

is the same block size’s order found in Mykland and Zhang (2011), who investigated

how constant we can hold volatility in a small neighborhood in the case of regular

observations of the price following a continuous Itô-process.
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Condition (E4). The block size hn is such that

n
1
l
−1hn = o(1) (3.48)

n
2
l
−1h

1− 2
l′

n → 1 (3.49)

Remark 16. (3.48) is in particular used to show (3.37).

The next condition assumes that uniformly in the parameter value and future pa-

rameter path, we can bound the discrepancy on the time-varying parameter model

starting with two different initial vectors. The reason why Condition (E5) doesn’t as-

sume also uniformity in the starting vector is that in the MA(1) example in Section

3.7.3 we don’t have such uniformity. Consequently, we need a weaker assumption. For

any M > 0, any θt ∈ EM and any M ∈ Mm,n we introduce the bias with parameter

θt as BM,θt
1,n := E

[(
θ̂hn,n(R

M,θt
1,n ; . . . ;RM,θt

hn,n
;M) − θ

)
TM,θt

1,n

]
. For any N ∈ Mm,n, we also

define the difference in bias as

BM,N,θt
1,n := E

[(
θ̂hn,n(R

M,θt
1,n , . . . , RM,θt

k,n ;M)− θ̂hn,n(R
N,θt
1,n , . . . , RN,θt

k,n ;N)
)
TN,θt

1,n

]
.

We finally define the variance of the estimated difference

EM,N,θt
1,n := Var

[(
θ̂hn,n(R

M,θt
1,n , . . . , RM,θt

k,n ;M)− θ̂hn,n(R
N,θt
1,n , . . . , RN,θt

k,n ;N)
)
TN,θt

1,n

]
.

Condition (E5). For any M > 0 we have

Bn∑
i=1

sup
θt∈EM

∣∣BM0
i,n,M

∗
n,θt

1,n

∣∣ = op(n
− 1

l ), (3.50)

Bn∑
i=1

sup
θt∈EM

E
M0

i,n,M
∗
n,θt

1,n = op(n
− 2

l ). (3.51)

Remark 17. Condition (E5) is used to show (3.39).

The last condition is very similar to Condition (E5), except that we are not looking
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at the discrepancy induced by different initial vectors but rather the difference between

the time-varying parameter model and the parametric model when initial vectors are

equal. For that reason, we introduce the difference in bias

BM,θ,θt
1,n := E

[(
θ̂hn,n(R

M,θt
1,n , . . . , RM,θt

k,n ;M)− θ̂hn,n(R
M,θ
1,n , . . . , R

M,θ
k,n ;M)

)
TM,θt

1,n

]
,

as well as the variance of the difference

EM,θ,θt
1,n := Var

[(
θ̂hn,n(R

M,θt
1,n , . . . , RM,θt

k,n ;M)− θ̂hn,n(R
M,θ
1,n , . . . , R

M,θ
k,n ;M)

)
TM,θt

1,n

]
.

Condition (E6). For any M > 0, we have

Bn∑
i=1

sup
θt∈EM

∣∣BM0
i,n,θ,θt

1,n

∣∣ = op(n
− 1

l ) (3.52)

Bn∑
i=1

sup
θt∈EM

E
M0

i,n,θ,θt

k,n = op(n
− 2

l ) (3.53)

Remark 18. Condition (E6) is used to show (3.39).

We now state the main theorem of Chapter 3, which investigates the limit distribu-

tion of (3.36).

Theorem (Central Limit Theorem). Assume conditions (E0)− (E6). Then, stably

in law as n→ ∞,

n
1
l

(
Θ̂n −Θ

) → T−1
( ∫ T

0

Vθ∗sds
) 1

2N (0, 1). (3.54)

Remark 19. (convergence rate and asymptotic variance) In most examples, we have

that l = 2, which is the best convergence rate in the parametric model. In view of

(3.49) in Condition (E4), in that case we also have l′ = 2 and thus the convergence

rate in (3.54) is the best attainable (Gloter and Jacod (2001)). If we also assume that

we have a parametric estimator which achieves the Cramér-Rao bound of efficiency, we
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conjecture that the variance in the right term of (3.59) is the nonparametric efficient

bound, at least in the case where there is no endogeneity.

Remark 20. (MLE) The MLE is a natural and popular estimator. In order for the

practitioner to be able to apply the local MLE and show the associated central limit

theorem, one has to keep in mind that in finite sample, the MLE is biased, with a bias

magnitude of the order of the number of observations inverse. To verify bias conditions

(3.47), (3.50) and (3.52), one has to apply a bias correction to the MLE discussed for

instance in Firth (1993).

Remark 21. (block size) Condition (E4) provides the asymptotic order to use for the

block size hn. Thus, it gives a rule basis to use on finite sample, but it is left to the

practitioner to ultimitalely choose hn. If the parametric estimator is badly biased, the

practitioner should increase the value of hn. Also, if the parameter process θ∗t seems

not to be moving a lot, hn can be chosen to be bigger. In Section 3.8, we show on the

model with uncertainty zones that the estimated volatility is not hn-dependent if we

choose hn ≈ N
1
2
n .

Remark 22. (subset parameter estimation) In practice, one can be interested in esti-

mating only a p′-dimensional integrated parameter Ξ, where p′ ∈ {1, . . . , p} and Ξ is

a subset of Θ. If we define in analogy with the quantities depending on θ∗t the p′-

dimensional subquantities ξ∗t , ξ̂k,n, Ξi,n, Ξ̂i,n Ξ̂n as well as the p′×p′-dimensional matrix

Vξ, the Central Limit Theorem still holds in that case under the same assumptions

n
1
l

(
Ξ̂n − Ξ

) → T−1
(∫ T

0

Vθ∗sds
) 1

2
.

Remark 23. (Estimating the Asymptotic Variance) If the practitioner doesn’t have

a (parametric) variance estimator at hand and that her parametric estimator can be

written as in Mykland and Zhang (2014), one can use the techniques of the Chapter 3 to

obtain a variance estimate. Investigating if such techniques would work in our setting is

beyond the scope of this Chapter 3. If she has an estimator, then for any i = 1, . . . , Bn
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she can estimate the ith block covariance V̂i,n as V̂i,n := v̂hn,n(R
1
i,n; . . . ;R

hn
i,n;R

0
i,n), and

she can estimate the asymptotic variance as the weighted sum

V̂n =
1

T 2

Bn∑
i=1

V̂i,nΔTi,n. (3.55)

Under conditions similar to the ones of Section 3.4.2 and Section 3.6, we can obtain

the consistency of (3.55).

Remark 24. (Estimator with unobservable returns as input) As a function of several

non-observable quantities can be observed, we can define the parametric estimator with

a slight difference θ̂k,n := θ̂k,n(M1,n; . . . ; Mk,n;M0,n). The central Limit Theorem still

holds in that more general case. An example of such θ̂k,n will be given with the HY in

Section 3.7.2.

Remark 25. (asymptotic assumption on returns) As discussed in Section 3.4.2, the

assumption (3.29) is relatively strong. We conjecture that under a more general as-

sumption, such as the uniform convergence in distribution of Fn(αn ∗ M, U1,n, θ) to a

non-degenerate limit, the Central Limit Theorem would still hold. In particular, that

would permit the noise to have a different convergence rate and the observation times

to follow more general point processes.

3.7 Examples

We have two purposes in this section. First, we want to document that assumptions of

the LPM are widely satisfied by models of the literature used to estimate high-frequency

quantities. In addition, in Section 3.7.4, we introduce a new model where efficient price

follows a continuous local martingale and the correlation structure between efficient

price, noise and arrival times is very general and then show that this model is contained

in the LPM class.

Moreover, we aim to show that theoretical conditions provided in Section 3.6 can
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be satisfied for specific problems. As a first example, to estimate high-frequency covari-

ance in the HBT model, Chapter 2 provided a bias-corrected HY estimator and used

techniques similar to the ones given in Chapter 3 to find the limit distribution. We

provide insight into their work in Section 3.7.2. As a second example, we introduce a

time-varying friction parameter extension of the model with uncertainty zones intro-

duced in Robert and Rosenbaum (2011) to estimate volatility and show that conditions

of Section 3.6 are easily satisfied in that case. This can be found in Section 3.7.1.

3.7.1 Volatility in the HBT model

The HBT model was introduced in Chapter 2 as a general multidimensional endogenous

model which can possibly include microstructure noise of a specific form. In this section,

we consider the one-dimensional case and notation of Chapter 2 are "in force". We recall

the definition of the two-dimensional process Yt := (Xt, X
(t)
t ), where X(t)

t is the time

process and assume that Yt follows a null-drift Itô-process with (matrix) volatility σY
t .

In order to embed the HBT model into the LPM, we need to assume that dt and ut

depend on a multidimensional parameter μt such that there exists a partially observed

Markov chain following (3.28) with θ∗t := (σY
t (σ

Y
t )

T , μt). The parameter thus includes

information on the volatility and also on observation times (which in particular depend

heavily on μt). We propose in the following to have a look at μt and other LPM

quantities on a couple of HBT examples, Example 1 in Chapter 2 and the model with

uncertainty zones. Furthermore, we investigate an associated LPE and the Central

Limit Theorem in the latter model.

Hitting Constant Boundaries

In Example 1 of Chapter 2, we assume no noise in observations and we have μt :=

(θu, θd), and because Xt = X
(t)
t , the information contained in σY

t (σ
Y
t )

T can be expressed

as the one-dimensional volatility σ2
t of Xt. Thus, we obtain that θ∗t := (σ2

t , θu, θd).

With the technology of Chapter 3, we can assume that θu and θd are continuous local
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martingale parameters in the model where arrival times are defined recursively as τ0,n :=

0 and for any positive integer i

τi,n := inf
{
t > τi−1,n : ΔX[τi−1,n,s] = θu,τi−1,n

or ΔX[τi−1,n,s] = θd,τi−1,n

}
. (3.56)

In (3.56), the boundaries are piece-wise constant equal to the initial-parameter value.

We can write (3.56) as a LPM with Mi,n := Ri,n := (ΔXτi,n ,Δτi,n), in particular

no unobserved quantity Qi,n is needed. Also, we have that the order of memory is

m := 0. The "random innovation" is defined as the future path of the Brownian

motion Ui,n :=
(
ΔX[τi−1,n,t]

)
t≥τi−1,n

and since m = 0, the returns can be written as

Ri,n := Fn(Ui,n, {θ∗s}τi−1,n≤s≤τi,n). If we define

v := inf
{
t > 0 :

∫ t

0

σsdus = θu,0 or
∫ t

0

σsdus = θd,0

}
we can express Fn(ut, (σt, θu,t, θd,t)) := (

∫ v

0
σsdus, v). Thus, Example 1 can be written

as a LPM.

Model with uncertainty zones

The model with uncertainty zones assumes that μt := (η, χt) where χt is the M -

dimensional time-varying parameter driving the conditional distribution of the jump

sizes in ticks, see p.5 in Robert and Rosenbaum (2012). Thus, we have that θ∗t :=

(σt, η, χt). We are not interested in estimating χt and thus we follow Remark 22 and

consider the subparameter ξ∗t = (σt, η) to be estimated. Following the setting of this

Chapter 3, we will assume that η is a time-varying parameter ηt and we will extend the

model with uncertainty zones in (3.57). We call this extension the time-varying model

with uncertainty zones. We define α(tick)
n (in lieu of αn in the cited paper) the tick size

(which vanishes asymptotically). The sampling times are defined recursively for any
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positive integer i

τi,n := inf
{
t > τi−1,n : Xt = X(α

(tick)
n )

τi−1,n
− α(tick)

n

(
Li,n − 1

2
+ ητi−1,n

)

or Xt = X(α
(tick)
n )

τi−1,n
+ α(tick)

n

(
Li,n − 1

2
+ ητi−1,n

)}
. (3.57)

We want to estimate the integrated parameter Ξ := (
∫ T

0
σ2
t dt,

∫ T

0
ηtdt). We define the

unobserved return as Qi,n := ΔXτi,n , the observed returns as Ri,n := (ΔZτi,n ,Δτi,n),

where the observed price is defined in Example 4 in Chapter 2. The order of memory

is m := 1. The "random innovation" is defined as the two-dimensional path Ui,n :=

((ΔX[τi−1,n,t])t≥τi−1,n
, (ΔW ′

[τi−1,n,t]
)t≥τi−1,n

) where W ′ is a Brownian motion independent

of the other quantities which deals with the jump size and which is defined in p.11 of

Robert and Rosenbaum (2012). We also define

w+ := inf
{
t > 0 :

∫ t

0

σsdu
(1)
s = −α(tick)

n

(
φ(χ0, u

(2)
t )− 1 + 2η0

)

or
∫ t

0

σsdu
(1)
s = α(tick)

n φ(χ0, u
(2)
t )

}
and

w− := inf
{
t > 0 :

∫ t

0

σsdu
(1)
s = −α(tick)

n φ(χ0, u
(2)
t )

or
∫ t

0

σsdu
(1)
s = α(tick)

n

(
φ(χ0, u

(2)
t )− 1 + 2η0

)}
,

where φ(χ0, u
(2)
t ) corresponds to the size of the next jump (in absolute number of ticks)

and can be found in p.11 of Robert and Rosenbaum (2012). Furthermore, we define

w := w+1{r(1)>0} + w−1{r(1)<0}.

101



www.manaraa.com

We can express

Fn

(
(q, r(1), r(2)), (u

(1)
t , u

(2)
t ), (σ2

t , ηt, χt)
)

:=
( ∫ w

0

σsdus, α
(tick)
n φ(χ0, u

(2)
t ) sign

( ∫ w

0

σsdus
)
, w

)
.

We estimate on each block the volatility and the friction parameter using respectively

the estimator R̂V
α
(tick)
n ,t

and a slight modification of η̂
α
(tick)
n ,t

(see p.8 in Robert and

Rosenbaum (2012), we use w in place of m) defined as

η̂
(m)
α,t :=

w∑
k=1

λ
(m)
α,t,ku

(m)
α,t,k (3.58)

with

λ
(m)
α,t,k :=

N
(a)
α,t,k +N

(c)
α,t,k∑w

j=1

(
N

(a)
α,t,j +N

(c)
α,t,j

) and u(m)
α,t,k := max

(
0,min

(
1,

1

2

(
k
(N (c)

α,t,k

N
(a)
α,t,k

− 1
)
+ 1

)))
,

where we assume that C
0
:= ∞, and in particular uα,t,k = 1 when N (a)

α,t,k = 0. We choose

to work with this modified estimator for both reasons because the definition of η̂α,t was

slightly unclear when N
(a)
α,t,k = 0 in p.8 of Robert and Rosenbaum (2012) and because

the finite sample bias of η̂(m)
α,t is slightly smaller with the modified estimator. We have

αααn := (α
(tick)
n , α

(tick)
n , (α

(tick)
n )2). We obtain the following theorem as an application of

the Central Limit Theorem.

Theorem (Time-varying friction parameter model with uncertainty zones).

Stably in law as n→ ∞,

(α(tick)
n )−1

(
Ξ̂n − Ξ

) → T−1
( ∫ T

0

Vθ∗sds
)N (0, 1), (3.59)

where Vθ can be straightforwardly inferred from the definition of Lemma 4.19 in p.26 of

Robert and Rosenbaum (2012).

The proof, checking that conditions (E0)-(E6) are satisfied, can be found in Ap-
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pendix.

Remark 26. We can add a drift to the volatility process following the techniques in

Remark 10.

Remark 27. Note that equivalently αααn := (n− 1
2 , n− 1

2 , n−1) and the convergence rate is

n
1
2 , see Remark 4 for more details.

3.7.2 High-frequency covariance in the HBT model

We recall the definition of the four-dimensional process Yt := (X
(1)
t , X

(2)
t , X

(t,1)
t , X

(t,2)
t )

in Chapter 2 and assume that Yt follows a non-drift Itô-process with volatility σY
t . We

also assume that d(k)t and u
(k)
t can be embedded in a multidimensional parameter μt

such that there exists a partially observed Markov chain with two-dimensional returns

following (3.28) with θ∗t := (σY
t (σ

Y
t )

T , μt). We are concerned with the estimation of the

high-frequency covariance and thus ξ∗t := (σY
t (σ

Y
t )

T )1,2. We are exactly in the setting

of Remark 22 with p′ = 1. We choose to work with the bias-corrected HY introduced

in Section 2.4.2.

We first show that the 2-dimensional HBT model is contained in the LPM class.

For that purpose, we identify the local Markov chain quantities used in the proof of

Chapter 2. Following the notation of Chapter 2, we define the non-observed part as

equal to

Qi,n :=
(
ΔX

(t,2)

[τ1Ci−1,n,τ
1C,+
i−1,n]

,ΔX
(t,2)

[τ1C,−
i,n ,τ1Ci,n ]

)
and the observed-part as equal to

Ri,n :=
(
τ 1C,+
i−1,n − τ 1Ci−1,n, τ

1C
i,n − τ 1C,−

i,n ,ΔX
(1)

τ1Ci,n
,Δτ 1Ci,n

)
.

In view of Lemma 10 in Appendix of Chapter 2 and Remark 4, we have that αααn :=

(n− 1
2 , n− 1

2 , n−1, n−1, n− 1
2 , n−1).

We now point to the parts of the proof in Chapter 2 that can be used to verify
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the conditions of Section 3.6. Condition (C0) is straightforwardly satisfied by the

assumptions of Chapter 2. Condition (C1) is satisfied by Lemma 7 and Condition (C2)

can be proven using the proof of Lemma 11. In Condition (C3), Equation (3.45) can be

satisfied using the same techniques than in the first three steps of the proof in Lemma

14. Equation (3.46) is straightforward to show. Finally, as the bias-corrected HY

estimator is unbiased for a fixed θ ∈ K, we show directly (3.47). We obtain Condition

(E4) with l = 1
2
, l′ = 1

2
and hn = o(n

1
2 ). Equation (3.50) in Condition (C5) comes from

the unbiasedness of the estimator. Proof techniques of the first three steps of the proof

in Lemma 14 can be used to prove (3.51) in Condition (C5). In Condition (C6), (3.52)

also comes from the unbiasedness of the estimator and (3.53) can be satisfied using a

similar proof to Lemma 13.

Remark 28. Because the sum of two unobserved variables from consecutive Markov

chain element ΔX(t,2)

[τ1C,−
i−1,n,τ

1C
i−1,n]

and ΔX
(t,2)

[τ1Ci−1,n,τ
1C,+
i−1,n]

is actually the increment of the second

asset (and thus observed), we are actually in the case of Remark 24.

We could add noise in the model extending the one-dimensional model introduced

in Section 3.7.4. We conjecture that a local parametric (bias-corrected) MLE would

satisfy the conditions of Section 3.6, and it would then be interesting to compare it

to the pre-averaged Hayashi-Yoshida estimator of Christensen et al. (2010, 2013) and

Koike (2014), two scales covariance estimator in Zhang (2011), the multivariate realised

kernel in Barndorff-Nielsen et al. (2011) and the high-frequency covariance estimator

of Aït-Sahalia et al. (2010).

3.7.3 Volatility in an asset price with non auto-correlated noise not

correlated with the efficient price

We assume that the observations occur at regular times τi,n = n−1T . We consider the

noised-return model

Ri,n := ΔXτi,n + ετi,n − ετi−1,n
, (3.60)
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where the noise εt := n− 1
2 (v∗t )

1
2χt is time-varying, χt are standard independent normally

identically distributed and independent of the (null-drift Itô-process with volatility

σ∗
t ) efficient process Xt :=

∫ T

0
σ∗
sdWs. The parameter process is defined as the two-

dimensional volatility and noise process θ∗t := ((σ∗
t )

2, v∗t ). We are interested in the

estimation of Θ :=
( ∫ T

0
(σ∗

t )
2dt,

∫ T

0
v∗t dt

)
. First, note that the model (3.60) can be

easily written as an LPM of order m = 1 with

Qi,n := (ΔXτi,n , ετi,n),

Ri,n := ΔXτi,n + ετi,n − ετi−1,n
,

Ui,n := ({ΔW[τi−1,n,s]}τi−1,n≤s≤τi,n , χτi,n).

Define G : R−
∗ → R such that G(x) = − 1

x
− x2. If we assume that the parameters are

constant equal to ((σ∗)2, v∗), we can rewrite (3.60) as

Ri,n := ηi,n + βηi−1,n,

where β := G−1
(
(σ∗)2T

v∗ + 2
)

and ηi,n are IID normal with variance un := − v∗
nβ

and thus

the returns follow locally an MA(1) process, as Aït-Sahalia et al. (2005) and Xiu (2010)

pointed out when the volatility and noise were non time varying parameters. In the

latter paper, the author showed that we can still use the MLE of MA(1) when volatility

is a time-varying quantity pretending that it is constant on the whole dataset. He

showed the consistency and the associated limit distribution of the QMLE in a slightly

different asymptotic setting than in Chapter 3 (with the noise component not shrinking

to 0 asymptotically). Nonetheless, the author assumed non time-varying noise. The

techniques of Chapter 3 allows us to go one step further by allowing time-varying noise.

We define the parametric estimator θ̂k,n as the bias-corrected MLE of the MA(1) process.

We obtain αααn := (n− 1
2 , n− 1

2 , n− 1
2 ). We conjecture that we can verify the assumptions of

Section 3.6 in this model with the local MLE.
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3.7.4 Volatility in an extended noisy HBT model where noise can be

auto-correlated and correlated with the efficient price

We go one step further the HBT model by allowing noise in the model as well. We keep

the structure generating the sampling times (2.1), but we observe now a noisy return

Ri,n := (ΔXτi,n + ετi,n − ετi−1,n
,Δτi,n). (3.61)

We also define the unobserved return Qi,n := (ΔXτi,n , ετi,n) and we assume that there

exists θ∗t and Ui,n such that they satisfy (3.28) for a positive integer order of memory

m. Note that the assumption (3.28) together with the assumption (3.61) allow for a

very general model. In particular, the noise and the efficient price can be correlated

with each other and the noise auto-correlated. In the simplest (non realistic) case, we

can imagine that the noise follows the same assumption as in Section 3.7.3. Because

observations occur on the tick grid, a realistic model assumes that the observed price

Zτi,n := Xτi,n + ετi,n takes only modulo of the tick size values. One possible extension of

the model introduced in Section 3.7.3 assumes that the price is rounded, i.e. Zτi,n :=

(Xτi,n + ετi,n)
(α

(tick)
n ). It can be written as an LPM of order m = 1 with

Qi,n := (ΔXτi,n , ετi,n , Xτi,n mod α(tick)
n ),

Ri,n := ΔXτi,n + ετi,n − ετi−1,n
,

Ui,n := ({ΔW[τi−1,n,s]}τi−1,n≤s≤τi,n , χτi,n).

Furthermore, we can show that one other simple model, the floor rounding with

probability 1
2

and ceiling rounding with probability 1
2

of the efficient price model, which

is decribed in p.7 of Dahlaus and Neddermeyer (2014), can be expressed as a LPM.

We insist on the fact that those are basic examples and that the LPM class is much

broader.

We conjecture here again that a local MLE would satisfy the conditions of Sec-
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tion 3.6, and that we could then infer in particular about the integrated volatalitity,

observation times parameter and integrated microstructure noise.

3.7.5 High Frequency Regression and ANOVA

We are interested in systems of the form dVt = βtdXt + dZt, where the high-frequency

correlation between Xt and Zt is null, i.e. 〈X,Z〉t = 0, we can observe the two processes

Vt and Xt and Xt can be multidimensional. We can see βt as the beta from portfolio

optimization and Zt the idiosyncratic noise, or βt can be the hedging delta of an option,

with Zt the error. There are two different objects of interest. First, the regression

problem seeks to infer about the integrated beta (Mykland and Zhang (2009, Section 4.2,

pp. 1424-1426), Kalnina (2012), Zhang (2012, Section 4, pp. 268-273), Reiss, Todorov,

and Tauchen (2014)). The ANOVA problem seeks to estimate the 〈Z,Z〉T :=
∫ T

0
(σZ

s )
2ds

(Zhang (2001) and Mykland and Zhang (2006)). We define Yt := (Vt, Xt) and assume

that Yt is a null-drift Itô-process with volatility σY
t . We can define the multidimensional

parameter θ∗t := (βt, σ
Y
t , (σ

Z
t )

2). We are interested in the estimation of the integrated

sub-parameter ξ∗t := (βt, (σ
Z
t )

2).

In the case where there is no microstructure noise in observations and the observa-

tions occur at regular times, it is easy to show that the LPM class contains the model

and that the estimator to be used locally is the usual least squares estimator, together

with the residual variance estimator. Furthermore, the assumptions of Section 3.6 are

easily satisfied. In the more general case where there can be microstructure noise, we

can use a model similar to Section 3.7.4. We conjecture in this case again that a local

MLE (or possibly another estimator) would satisfy the conditions of Section 3.6.

3.7.6 Limit Order Book (LOB)

A LOB is a multidimensional queuing system, that gathers for any t ≥ 0 the total

volume of non-executed orders for every price level. Each 1-dimensional Order Book
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can be seen as a stochastic process of its inter-arrival times between two consecutive

events. Consequently, we can describe a LOB as a high-dimensional point process,

where each component counts the number of orders of a given type and a given price

level. Very often it is assumed in the literature that the LOB process is a function of

a non time-varying parameter θ∗ as in Ogihara and Yoshida (2011). This constancy

assumption is seldom checked properly. Using the techniques of Chapter 3, The LOB

user could allow for a time-varying parameter. First, she would need to investigate if

the LPM class contains her parametric model, build a time-varying parametric model

and then check the conditions of Section 3.6 to use a LPE. We saw in Example 8 that a

1-dimensional Poisson-process is a LPM. In particular, we conjecture that we can build

a time-varying parameter extension of the Hawkes process introduced in Hawkes (1971)

and used in Bacry et al. (2013) and Aït-Sahalia et al. (2015) which is contained into

the LPM class and that the LPE of the QMLE in Clinet and Yoshida (2015) would

satisfy the conditions of Section 3.6.

3.7.7 Leverage effect

The leverage effect describes the (usually) negative relation between stock returns and

their volatility (see e.g. Wang and Mykland (2014), Aït-Sahalia et al. (2014)). In

that case, the parameter of interest can be defined as ξ∗t := d〈X,F (σ∗)〉t/dt where

conditions on the nonrandom function F can be found in p.199 of Wang and Mykland

(2014). Note that the convergence rate is l = 1
4

if there is no microstructure noise. In

light of Condition (E4), this example would require probably extrawork, and provide

a new estimator with a convergence rate not as good as the parametric estimator. If

we assume that the model is the same as in Section 3.7.4, a LPE could work but a

parametric estimator would first need to be given.
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3.7.8 Volatility of volatility

This is similar to the leverage effect, one would have to investigate first a parametric

estimator. In that case, the parameter of interest is defined as ξ∗t := d〈(σ∗)2, (σ∗)2〉t/dt.
The convergence rate is also l = 1

4
. We can find results on this inference problem in

Vetter (2011) and Mykland, Shephard and Sheppard (2012).

3.8 Empirical work

In this section, we are interested in estimating the integrated parameter in the time-

varying friction parameter model with uncertainty zones introduced in Section 3.7.1.

We remind the reader that the parameter of interest is defined as ξ∗t = (σ2
t , ηt). We

are looking at Orange France Telecom stock price on the CAC 40 on Monday March

4th, 2013. The number of returns between 9am and 4pm corresponding to a "change

of price" is equal to Nn = 3306, and the tick size α(tick)
n = 0.001 euro. We assume that

T := 1, consider that t = 0 corresponds to 9am and that t = T corresponds to 4pm.

When assuming the non time-varying model with friction parameter equal to η,

we can estimate the non time-varying endogeneity parameter η̂(m)
α,T . Note that in finite

sample, η̂(m)
α,T is biased and that this bias can be estimated following the estimate B̂

in Appendix 3.10.7. Also, we define the standard deviation sn(η) and a standard

deviation estimate ŝn(η) where the expression is also provided in Appendix 3.10.7. We

will estimate the standard deviation as ŝn := ŝn(η). We find empirically η̂(m)
α,T := 0.155

and ŝn := 0.008.

We define η̂i,n the estimate of η on the ith block following (3.35). We also define

the standard deviation estimate of η̂i,n as ŝi,hn := si,hn(η̂n). Note that ŝi,hn is not block-

dependent except for the last block which is thus removed from the analysis in the

following. Consequently we define ŝhn := ŝ1,hn . Figure 3.1 shows the evolution of η̂i,n
for different values of hn. Based on those estimates and the standard deviation estimate
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sn, we compute the associated chi-square statistic

χ2
n :=

Bn−1∑
i=1

( η̂i,n − η̂

sn

)2
.

Under the null hypothesis which states that ηt is non time-varying, χ2
n follows approx-

imately a chi-square distribution with Bn − 1 degrees of freedom. We report χ2
n for

different values of hn in Table 3.1. The obtained values indicate that we have strong

evidence against the null hypothesis, thus it provides us very good reasons to use the

techniques of Chapter 3.

Figure 3.1: Evolution of η̂i,n for different values of hn. The red line corresponds to η̂.

The blue lines are one standard deviation ŝhn away from η̂. The purple lines are two

standard deviations away from η̂.

110



www.manaraa.com

hn Bn Chi Sq. Stat Dg. Fr. p-value

50 67 719 66 0

100 34 268 33 0

150 23 155 22 0

200 17 116 16 0

250 14 109 13 0

300 12 68.5 11 0

350 10 90.6 9 0

400 9 91.5 8 0

450 8 42.6 7 6e−7

Table 3.1: Summary chi-square statistics based on the block size hn. Note that since

the number of observations of the last block is arbitrary, the last block estimate η̂Bn,n

is not used to compute the chi-square statistic.

We now compute Θ̂n for different values of hn following the time-varying friction

parameter model with uncertainty zones. In view of (3.49), because N
1
2
n ≈ 57.5 we will

choose to work with hn = 43, . . . , 63. We can see in Figure 3.2 that we obtain different

estimates of volatility using the techniques of this work compared to the estimates of

the model with uncertainty zones, which is one reason why it is crucial to use a proper

time-varying model for ηt. The estimates of the model with uncertainty zones seems to

underestimate the integrated volatility. In addition, the RV estimator, which doesn’t

take account of the microstructure noise, seems to be overestimating the integrated

volatility. This is what to be expected and thus indicates that the correction made

to the estimated volatility by Θ̂n is reasonable. Finally, the estimates are very similar

for different values of hn, which seems to indicate that the method is robust to small

variation of the block size.
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Figure 3.2: Evolution of the estimated volatility σ̂2
i,n for different values of hn. The red

line corresponds to the RV estimator. The blue line stands for the estimated volatility

if we use the volatility estimator R̂V
α
(tick)
n ,T

of the model with uncertainty zones.

3.9 Conclusion

We have introduced in this chapter a general class of time-varying parameter models

called LPM. In particular, if the asset price is assumed to follow a stochastic process, the

LPM allows for auto-correlated time-varying noise and correlation between the efficient

process, the microstructure noise and the sampling times. If the econometrician has

a specific LPM and a parametric estimator at hand, we provided an estimator of the

integrated parameter. We also gave conditions under which the econometrician can

show the limit distribution.
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Depending on the problem, verifying those conditions is not necessarily straightfor-

ward. Nonetheless, Chapter 3 simplifies consequently the work of the econometrician

because she can solve a nonparametric problem using only a parametric estimator. As

a matter of example, we showed that we were able to estimate the integrated volatility

when assuming a time-varying model with uncertainty zones.

In the future, we would like to verify the conditions of Section 3.6 with the model

introduced in Section 3.7.3 and Section 3.7.4. Also, most examples of this chapter

are coming from the efficient price-process point-of-view, but the LPM class is also

conjectured to contain numerous point process models used to model the LOB, such as

self-exciting point processes. For that purpose, as discussed in Remark 25, we would

need to weaken the asymptotic returns assumption.

Chapter 3 was focused on the estimation of the integrated parameter of the LPM.

Condition (E6) states that the normalized discrepancy between the estimator on the

observed returns and the approximated returns with the same starting value vanishes

asymptotically. Roughly speaking, it means that we can see the LPM as a block-

constant parameter model. Thus, we conjecture that parametric tests can also be

used. As an example, the log-ratio statistic could test for nested models and provide

us evidence on the structure driving the returns. This would most likely enable us

to investigate the question of presence of noise in, say, 5-minute returns, the question

of correlation between efficient price and noise, the asymmetric information problem

using the extension of the model of uncertainty zones in Section 2.3.2, the presence of

endogeneity etc.

One other possible application of the fact that the LPM can be seen as a block-

constant parameter model is in model selection. Given data and a set of candidate

LPM, on the one hand we could sum up their block-local maximum likelihood functions.

Because of the Markov property of the LPM, we would obtain an estimate of their

maximum likelihood function on the whole interval [0, T ]. On the other hand, we
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could build a measure of the integrated volatility of the parameter 〈θ∗, θ∗〉t, based

on techniques used in Mykland and Zhang (2014). Then, we could generalize the

Akaike Information Criterion (AIC) and LPM could be compared on the basis of their

maximum likelihood function and a penalization which would include the number of

parameters and the volatility of the parameter.

Finally, we also believe that the ideas of Chapter 3 can be useful to forecasting at

time T . The question of estimating the parameter of a time series or more generally

parametric model which admit a LPM time-varying extension in order to "plug-in" the

value into the forecast model could be modified to the problem of estimating the spot

parameter θ∗T and using this estimate instead. One idea could be to use a weighted

sum of Θ̂n with increasing weights so that the information contained in the most recent

observations will be used more that the information contained in older observations.

3.10 Appendix

3.10.1 Preliminaries

Since | θ∗t | is locally bounded and (θ∗t )
+ is locally bounded away from 0, we can follow

standard localisation arguments (see, e.g., pp. 160−161 of Mykland and Zhang (2012))

and assume without loss of generality that there exists M > 0 such that θ∗t ∈ KM for all

0 ≤ t ≤ T . Furthermore, because we assume that the volatility of the parameter σθ
t is

locally bounded, we can use the same techniques and assume without loss of generality

that there exists σ+ > 0 such that σθ
t ≤ σ+ for all 0 ≤ t ≤ T .

Finally, we fix some notation. In the following of Chapter 3, we will be using C for

any constant C > 0, where the value can change from one line to the next.
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3.10.2 Proof of Theorem (consistency)

Proof (C1) ⇒(3.24)

It suffices to show that (C1) implies that

sup
i≥0

E

[∣∣ ̂̃Θi,n − Θ̃i,n

∣∣] = op(1) (3.62)

By (3.11) and (3.23), we can write

∣∣ ̂̃Θi,n − Θ̃i,n

∣∣ = gn(U
1
i,n, . . . , U

hn
i,n , Θ̃i,n)

where gn is a jointly measurable real-valued function such that

E
∣∣gn(U1

i,n, . . . , U
hn
i,n , Θ̃i,n)

∣∣ <∞.

E

[
gn(U

1
i,n, . . . , U

hn
i,n , Θ̃i,n)

]
= E

[
E

[
gn(U

1
i,n, . . . , U

hn
i,n , Θ̃i,n)

∣∣Θ̃i,n

]]
= E

[∫
gn(u, Θ̃i,n)μω(du)

]

where μω(du) is a regular conditional distribution for (U1
i,n, . . . , U

hn
i,n) given Θ̃i,n (see,

e.g., Breiman (1992)). From Condition (C1), we obtain (3.62).

Proof (C2) ⇒(3.25)

It is sufficient to show that (C2) implies that

sup
i≥0

E

[∣∣Θ̂i,n − ˆ̃Θi,n

∣∣] = op(1) (3.63)
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By (3.10), (3.11), (3.22) and (3.23), we can write

∣∣Θ̂i,n − ˆ̃Θi,n

∣∣ = g(2)n (U1
i,n, . . . , U

hn
i,n , {θ∗s}τ0i−1,n≤s≤τ0i,n

, Θ̃i,n)

E

[
|Θ̂i,n − ˆ̃Θi,n|

]
= E

[
E

[
g(2)n (U1

i,n, . . . , U
hn
i,n , {θ∗s}τ0i−1,n≤s≤τ0i,n

, Θ̃i,n)|Θ̃i,n

]]
= E

[∫
g(2)n (v, Θ̃i,n)μω(dv)

]
= op(1)

where μω(dv) is a regular conditional distribution for (U1
i,n, . . . , U

hn
i,n , {θ∗s}τ0i−1,n≤s≤τ0i,n

)

given Θ̃i,n and where we used Condition (C2) in the last equality.

3.10.3 Proof of Consistency in Example 7

Let’s show Condition (C1) first. For any M > 0, the quantity

∣∣∣σ̂2
hn,n

(
Fn(U

1
1,n, σ

2); . . . ;Fn(U
hn
1,n, σ

2)
)− σ2

∣∣∣
can be uniformly in {σ2 ∈ KM} bounded by

C
∣∣∣ hn∑
j=1

(ΔW[τ j−1
1,n ;τ j1,n]

)2T−1 − 1
∣∣∣ (3.64)

We can prove that (3.64) tends to 0 in probability as a straightforward consequence of

Theorem I.4.47 of p.52 in Jacod and Shiryaev (2003).

To show Condition (C2), let M > 0 and θt ∈ EM . It is sufficient to show that the

following quantity goes to 0.

nh−1
n

hn∑
j=1

E

[∣∣∣(θ0ΔW[τ j−1
1,n ;τ j1,n]

)2 − ( ∫ τ j1,n

τ j−1
1,n

θsdWs

)2∣∣∣] (3.65)
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Using Conditional Burkholder-Davis-Gundy inequality (BDG, see inequality (2.1.32) of

p. 39 in Jacod and Protter (2012)), (3.65) can be bounded by

Ch−1
n

hn∑
j=1

E

[∣∣∣θτ0i,nΔW[τ j−1
i,n ;τ ji,n]

−
∫ τ ji,n

τ j−1
i,n

θsdWs

∣∣∣] (3.66)

We can also bound (3.66) by

Ch−1
n

hn∑
j=1

(Δτ j1,n)
1/2︸ ︷︷ ︸

O(n−1/2)

E

⎡⎣∣∣∣ sup
s∈[τ j−1

1,n ,τ j1,n]

|θ0 − θs|
∣∣∣
⎤⎦

︸ ︷︷ ︸
op(n−1/2)

where we used BDG another time to obtain op(n−1/2).

3.10.4 Proof of Consistency in Example 8

(C1) can be shown easily. Similarly (C2) is a direct consequence of the definition in

(3.12), (3.13) together with (3.15).

3.10.5 Proof of Theorem (central limit theorem)

We show (3.37)

We aim at showing that

Ei,n :=
Bn∑
i=1

n
1
l

(
Θ̃i,n −Θi,n

)
ΔTi,n︸ ︷︷ ︸

ei,n

P→ 0 (3.67)
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Note that ETi−1,n

[
e2i,n

]
= 0 and thus that Ei,n is a discrete martingale. We compute the

limit of n
2
l

∑Bn

i=1 ETi−1,n

[
e2i,n

]
n

2
l

Bn∑
i=1

ETi−1,n

[
e2i,n

]
= n

2
l

Bn∑
i=1

ETi−1,n

[( ∫ Ti,n

Ti−1,n

(θ∗u − θ∗Ti−1,n
)du

)2]
≤ Cn

2
l

Bn∑
i=1

(
ETi−1,n

[
(ΔTi,n)

4
]) 1

2︸ ︷︷ ︸
Op(h2

nn
−2)(

ETi−1,n

[
sup

Ti−1,n≤s≤Ti,n

(θ∗s − θ∗Ti−1,n
)4
]) 1

2︸ ︷︷ ︸
Op(hnn−1)

= op(1)

where we used Conditional Cauchy-Schwarz in the inequality, (3.41) of Condition (E1)

together with BDG inequality to obtain the big taus, and the last equality by (3.48) of

Condition (E4). Because we showed that n
2
l

∑Bn

i=1 ETi−1,n

[
ei,n

]
tends to 0 in probability,

we obtain (3.67).

We show (3.38)

Without loss of generality, we can assume that the prameter θ∗t is a 1-dimensional

process. Because the parametric estimator can be biased, in all generality, Ai,n :=

n
1
l

( ˆ̃ΘM∗
n

i,n − Θ̃i,n

)
ΔTi,n is not the increment term of a discrete martingale. Thus, we

need first to compensate it in order to apply usual discrete martingale limit theorems.

Let Bi,n = Ai,n−ETi−1,n
[Ai,n]. We want to use Corollary 3.1 of pp. 58− 59 in Hall and

Heyde (1980). First, note that by Condition (E0) condition (3.21) in p.58 of Hall and

Heyde (1980) is satistfied. We turn now to the two other conditions of the corollary in

the two following steps.
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First condition : We will show in this step that for all ε > 0,

Bn∑
i=1

ETi−1,n

[
B2

i,n1{Bi,n>ε}
] P→ 0 (3.68)

The conditional Cauchy-Schwarz inequality gives us that each term of the sum in (3.68)

can be bounded by

(
ETi−1,n

[
B4

i,n

]
ETi−1,n

[
1{Bi,n>ε}

]) 1
2 (3.69)

Consider the approximated time ΔT̃i,n :=
∑hn

j=1(R̃
j
i,n)

(d). Define Ãi,n := n
1
l

( ˆ̃ΘM∗
n

i,n −
Θ̃i,n

)
ΔT̃i,n and the compensated quantity B̃i,n = Ãi,n − Eτi−1,n

[
Ãi,n

]
. By (3.44), we

have
Bn∑
i=1

(
ETi−1,n

[
B4

i,n

]
ETi−1,n

[
1{Bi,n>ε}

]) 1
2

=
Bn∑
i=1

(
ETi−1,n

[
B̃4

i,n

]
ETi−1,n

[
1{Bi,n>ε}

]) 1
2 + op(1) (3.70)

To show that the right term of the sum in the right-hand side of (3.70) vanishes uni-

formly, we use regular condition together with (3.41), (3.45) and (3.48). We apply

regular conditional distribution together with (3.46) on the left term of the sum in the

right-hand side of (3.70). Then, we use the block assumption (3.49) when taking the

sum of all the terms in the right-hand side of (3.70) and we can prove (3.68).

Second condition : We will prove that

Bn∑
i=1

ETi−1,n

[
B2

i,n

] P→
∫ T

0

Vθ∗sds (3.71)
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By regular conditional ditstribution and (3.44), we have

Bn∑
i=1

ETi−1,n

[
B2

i,n

]
=

Bn∑
i=1

ETi−1,n

[
B̃2

i,n

]
+ op(1)

By regular conditional distribution and (3.45), we have that

Bn∑
i=1

ETi−1,n

[
B̃2

i,n

]
= h

1− 2
l′

n n
2
l
−1

Bn∑
i=1

ETi−1,n

[
Vθ∗Ti−1,n

ΔT̃i,n

]
+ op(1)

Using Lemma 2.2.11 of Jacod and Protter (2012) with (3.44), we obtain

h
1− 2

l′
n n

2
l
−1

Bn∑
i=1

ETi−1,n

[
Vθ∗Ti−1,n

ΔT̃i,n

]
= h

1− 2
l′

n n
2
l
−1

Bn∑
i=1

Vθ∗Ti−1,n
ΔTi,n + op(1)

We can apply now Proposition I.4.44 (p. 51) in Jacod and Shiryaev (2003) and (3.49)

and we get

h
1− 2

l′
n n

2
l
−1

Bn∑
i=1

Vθ∗Ti−1,n
ΔTi,n →

∫ T

0

Vθ∗sds

We are interested in the stable convergence of the sum of Ai,n terms, but by using

Corollary 3.1 of pp. 58 − 59 in Hall and Heyde (1980), we only obtain the stable

convergence of the increment martingale terms Bi,n. We will show now that the sum

of the conditional means Sn :=
∑Bn

i=1 ETi−1,n

[
Ai,n

]
tends to 0 in probability. First, by

(3.44), we have Sn =
∑Bn

i=1 ETi−1,n

[
Ãi,n

]
+op(1). Then, an application of (3.47) together

with regular conditional distribution will give us the convergence to 0 of Sn.
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We show (3.39)

We want to prove

n
1
l

Bn∑
i=1

( ˆ̃ΘM0
i,n

i,n − ˆ̃Θ
M∗

n
i,n

) P→ 0 (3.72)

We define the conditional expectation of the terms in the sum of (3.72)

Ci,n := ETi−1,n

[ ˆ̃ΘM0
i,n

i,n − ˆ̃Θ
M∗

n
i,n

]
.

In analogy with the previous part, we can rewrite the left term of (3.72) as

n
1
l

( Bn∑
i=1

( ˆ̃Θ
M0

i,n

i,n − ˆ̃Θ
M∗

n
i,n )− Ci,n︸ ︷︷ ︸

Di,n

+
Bn∑
i=1

Ci,n

)

Note that
∑k

i=1Di,n is a discrete martingale, and thus to show that it vanishes asymp-

totically, it is sufficient to show

n
2
l

Bn∑
i=1

ETi−1,n

[
D2

i,n

] P→ 0 (3.73)

Regular conditional distribution, (3.44) and (3.51) implies (3.73). Similarly, regular con-

ditional distribution together with (3.44) and (3.50) enables us to deduce
∑Bn

i=1Ci,n
P→ 0.

Thus, we proved (3.72).

We show (3.40)

The proof is very similar to the one of Second term, using the Condition (E6) instead

of Condition (E5).
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3.10.6 Proof of Theorem (Time-varying friction parameter model with

uncertainty zones)

We verify Conditions (E0)− (E6) of Section 3.2.

Condition (E0) : The continuous information can be defined in this problem such

that Xt, σ
2
t , ηt, χt, W

′
t are adapted to J (c)

t , where W ′
u is an Brownnian motion inde-

pendent of the other quantities, which was defined in p.11 of Robert and Rosenbaum

(2012) and which is used to define the absolute size of the next jump price Li,n.

Condition (E1) : This follows exactly Corollary 4.4 in Robert and Rosenbaum

(2012).

Condition (E2) : This can be shown exactly the same way as Lemma 11.

Condition (E3) : In this case, we have l′ = 2. Let M > 0. Because in the model

with uncertainty zones Tθ
1,n can be written as a sum of IID variables with a finite fourth

moment, we have uniformly in θ ∈ KM

Var
[
h

1
l′
n

(
θ̂hn,n(R

M∗
n,θ

1,n ; . . . ;R
M∗

n,θ
hn,n

;M∗
n)− θ

)
Tθ

1,n

]
= Var

[
h

1
l′
n

(
θ̂hn,n(R

M∗
n,θ

1,n ; . . . ;R
M∗

n,θ
hn,n

;M∗
n)− θ

)](
E
[
Tθ

1,n

]
)2 + op(h

2
nn

−2)

= Var
[
h

1
l′
n

(
θ̂hn,n(R

M∗
n,θ

1,n ; . . . ;R
M∗

n,θ
hn,n

;M∗
n)− θ

)]
Tθ

1,nhnn
−1 + op(h

2
nn

−2)

By lemma 4.19 in p. 26 of Robert and Rosenbaum (2012) in the special case where the

volatility is constant, we obtain the existence and the value of Vθ such that (3.45) is

satisfied. Also, (3.46) and (3.47) are straightforward to verify.

Condition (E4) : We choose l = 2 and l′ = 2, and hn which satisfies (3.48).

Condition (E5) : Because of the symmetry in the model with uncertainty zones,

note that for any M,N ∈ Mm,n, we have

θ̂hn,n(R
M,θ
1,n ; . . . ;RM,θ

hn,n
;M) = θ̂hn,n(R

N,θ
1,n ; . . . ;R

N,θ
hn,n

;N).
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Thus, Condition (E5) is satisfied.

Condition (E6) : This proof is similar to the proof of (3.67).

3.10.7 Estimation of the friction parameter bias and standard deviation

in the model with uncertainty zones

The notation of Section 3.7.1 are in force. We define ŝn(η) := V̂ , where an expression

of V̂ will be provided at the end of this section. First, we assume that the absolute

jump size is constant equal to the tick size, i.e. Li,n := 1. In view of (3.58), we have

η̂
(m)
α,t := min

(
1,

N
(c)
α,t,k

2N
(a)
α,t,k

)
.

We also have by definition that the number of alternations is N (a)
α,t,k = Nn − N

(c)
α,t,k. If

we assume that Nn is non-random, then

N
(c)
α,t,1 ∼ Bin(Nn,

2η

2η + 1
), (3.74)

where Bin(n, p) is a binomial distribution with n observations and probability p. Let

B ∼ Bin(Nn,
2η

2η+1
). We can define the bias

B := E

[
min

(
1,

B

2(Nn − B)

)]
− η

and the variance as

V := Var

[
min

(
1,

B

2(Nn − B)

)]
.

B and V can be computed easily numerically.

If Nn is random, we can work conditionally on Nn. Nonetheless, as the sampling

times are endogenous, (3.74) is not true in that case. We can still approximate N (c)
α,t,1

by Bin(Nn,
2η

2η+1
) if the number of observations is large enough.
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